Model-checking Real-time Systems with Roméo
École d’été Temps Réel 2017

Didier Lime
École Centrale de Nantes – LS2N

Paris, August 29th, 2017
Roméo

- Roméo is a tool for the verification of Time Petri Nets;
- Developed since 2001 by Olivier H. Roux and Didier Lime;
- Written in C++ (engine, ~24K loc) and Tcl/Tk (GUI, ~18K loc);
- Distributed under the terms of the CeCILL open source license;
- Available at: http://romeo.rts-software.org
What can we model with Roméo?

- Complex interactions \rightarrow Petri nets;
- Complex discrete behaviors \rightarrow discrete variables;
- Timing uncertainty \rightarrow time intervals;
- Preemptive scheduling \rightarrow stopwatches;
- Design uncertainty \rightarrow parameters;
- Soft real-time constraints, or energy constraints \rightarrow cost optimisation.
Roméo: Some Success Stories

- Analysis of resilience properties in oscillatory biological systems [AMI16];
- Environment requirements for an aerial video tracking system (with Thales Research) [PRH+16];
- **Operational scenarios** modelling in the DGA OMOTESC project (with Sodius Nantes, Charlotte Seidner’s Ph. D.) [Sei09].
Outline

Introduction

Time Petri Nets

Conclusion
Petri Nets
Petri Nets
Petri Nets
Time Petri Nets

\[t_0[1, 4] \rightarrow t_1[2, 3] \]

\[p_0 \rightarrow p_1 \]

\[t_0[1, 4] \rightarrow t_1[2, 3] \]

\[p_2 \]
Time Petri Nets

\[t_0 \in [1, 4] \]
\[t_1 \in [2, 3] \]
Time Petri Nets

\[t_0 \in [1, 4] \rightarrow [0, 2.9] \]
\[t_1 \in [2, 3] \rightarrow [0.9, 1.9] \]
Time Petri Nets

\[t_0 \in [1, 4] \quad t_1 \in [2, 3] \]

\[t_0 \rightarrow 0.9 \rightarrow 1.9 \rightarrow [0, 2.9] \quad t_1 \rightarrow [0.9, 1.9] \]
Time Petri Nets

\[
\begin{align*}
\text{t}_0 & \in \left[1, 4\right] & \text{t}_0 & \rightarrow & \left[0, 2.9\right] & \left[0.9, 1.9\right] \\
\text{t}_1 & \in \left[2, 3\right] & \text{t}_1 & \rightarrow & \left[1, 4\right] & \left[0.9, 1.9\right] & \left[0, 0\right]
\end{align*}
\]
Time Petri Nets

\[p_0 \xrightarrow{t_0 \in [1, 4]} [0, 2.9] \]
\[t_0 \xrightarrow{t_1 \in [2, 3]} [0.9, 1.9] \]
\[t_1 \xrightarrow{1.1} [0.9, 1.9] \]

\[p_1 \xrightarrow{t_0 \in [1, 4]} [0, 2.1] \]
\[t_0 \xrightarrow{t_1} [0, 2.1] \]

\[p_2 \xrightarrow{t_1} [0, 2.1] \]
Basic Properties

- **The non-nested** fragment of TCTL + (bounded) **response**;

- **Marking** properties are either:
 - linear constraints on the marking: $p_1 + 2 \times p_2 > 4$
 - a boundedness property: bounded(1)
 - a deadlock property: deadlock

- **Temporal** properties (ϕ, ψ are marking properties):
 - $E \phi U [3, 4] \psi$: there is a path on which ψ eventually holds in 3 to 4 t.u. and ϕ holds in the meantime;
 - $A \phi U [3, 4] \psi$: on all paths ψ eventually holds in 3 to 4 t.u. and ϕ holds in the meantime;
 - $\phi \longrightarrow [0, 5] \psi$: whenever ϕ holds, on all subsequent paths ψ holds within 5 t.u.

- **Classic shorthands**:
 - $EF [3, 4] \psi = E \text{true} U [3, 4] \psi$: reachability;
 - $AF [3, 4] \psi = A \text{true} U [3, 4] \psi$: inevitability;
 - $EG \psi = \neg AF (\neg \psi)$: preservability;
 - $AG \psi = \neg EF (\neg \psi)$: safety.
Basic properties
Basic properties
Basic properties
Basic properties

\[\text{AF}_\varphi \]
Basic properties
Basic properties
Basic properties
State Classes [BD91]

- There is an uncountable number of states even in **bounded** TPNs;
- ⇒ group all states obtained by the same sequence of transition firing;

New times to fire:

Initially:

\[
\begin{align*}
&1 \leq t_0 \leq 4 \\
&2 \leq t_1 \leq 3
\end{align*}
\]

Fire \(t_0\):

\[
\begin{align*}
&1 \leq t_0 \leq 4 \\
&2 \leq t_1 \leq 3 \\
&t_0 \leq t_1
\end{align*}
\]

Disabled (incl. \(t_0\)):

\[
\begin{align*}
&0 \leq t_1' \leq 2
\end{align*}
\]

Newly enabled:

\[
\begin{align*}
&1 \leq t_0 \leq 4 \\
&0 \leq t_1 \leq 2
\end{align*}
\]
State Classes [BD91]

- There is an uncountable number of states even in **bounded** TPNs;
- ⇒ group all states obtained by the same sequence of transition firing;

![Petri Net Diagram]

Initially:

\[
\begin{align*}
1 \leq t_0 &\leq 4 \\
2 \leq t_1 &\leq 3
\end{align*}
\]

Fire \(t_0 \):

\[
\begin{align*}
1 \leq t_0 &\leq 4 \\
2 \leq t_1 &\leq 3 \\
t_0 &\leq t_1
\end{align*}
\]

Disabled (incl. \(t_0 \)):

\[
\begin{align*}
0 \leq t'_1 &\leq 2
\end{align*}
\]

Newly enabled:

\[
\begin{align*}
1 \leq t_0 &\leq 4 \\
0 \leq t_1 &\leq 2
\end{align*}
\]

Class firing domains are zones (DBMs).
State Classes [BD91]

- There is an uncountable number of states even in bounded TPNs;
- ⇒ group all states obtained by the same sequence of transition firing;

\[
p_0 \quad t_0[1, 4] \quad p_1 \quad t_1[2, 3] \quad p_2
\]

Initially:
\[
\begin{align*}
1 & \leq t_0 \leq 4 \\
2 & \leq t_1 \leq 3
\end{align*}
\]

Fire \(t_0 \):
\[
\begin{align*}
1 & \leq t_0 \leq 4 \\
2 & \leq t_1 \leq 3 \\
t_0 & \leq t_1
\end{align*}
\]

Disabled (incl. \(t_0 \)):
\[
\begin{align*}
0 & \leq t_1' \leq 2
\end{align*}
\]

Newly enabled:
\[
\begin{align*}
1 & \leq t_0 \leq 4 \\
0 & \leq t_1 \leq 2
\end{align*}
\]

Class firing domains are zones (DBMs).
Roméo can also do symbolic simulation using zones à la Timed Automata.
Conclusion

- **Buy Roméo now!**
 - Roméo allows for a wide range of analyses on Time Petri Nets (extended with variables);
 - The additional combined availability of costs, parameters, and stopwatches make it unique;
 - It is constantly evolving as a prototype but has good performance and not too many bugs.

- **Next** evolutions and uses:
 - Add timed control, à la Uppaal-Tiga, but with state classes;
 - Add lazy abstraction based algorithms [JL16];
 - Model the multicore version of Trampoline RTOS [TBFR17]
References I

Analyzing resilience properties in oscillatory biological systems using parametric model checking.
Selected papers from the Computational Methods in Systems Biology 2015 conference.

B. Berthomieu and M. Diaz.
Modeling and verification of time dependent systems using time Petri nets.

Loïg Jezequel and Didier Lime.
Lazy reachability analysis in distributed systems.
In Josée Desharnais and Rhada Jagadeesan, editors, _The 27th International Conference on Concurrency Theory (CONCUR 2016)_ , LIPIcs, Québec City, Québec, Canada, August 2016. Dagstuhl Publishing.
References II

Baptiste Parquier, Laurent Rioux, Rafik Henia, Romain Soulat, Olivier H. Roux, Didier Lime, and Étienne André.
Applying parametric model-checking techniques for reusing real-time critical systems.

Charlotte Seidner.
Vérification des EFFBDs : Model checking en Ingénierie Système. (EFFBDs Verification: Model checking in Systems Engineering).

Toussaint Tigori, Jean-Luc Bechennec, Sebastien Faucou, and Olivier H. Roux.
Formal model-based synthesis of application specific static RTOS.