
RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

On the Runtime Enforcement of (Timed) Properties

Yliès Falcone

based on joint work with T. Jéron, H. Marchand, S. Pinisetty, M. Renard, A. Rollet

Lecture at the ETR summer school

Univ. Grenoble Alpes, Inria CORSE Team, Laboratoire d’Informatique de Grenoble, France

(CORSE Inria Team)

1

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Runtime verification and enforcement (monitors)

Runtime verification and enforcement:

• No system model.

• A correctness property ϕ.

• A monitor observes the execution of a system (e.g., trace, log, messages).

Runtime verification

verdicts eventsMonitor

Verification

σ |= ϕ?
σ ∈ Σ∞Dw ∈ D∞

• Does the run satisfy the

property?

• Input: stream of events.

• Output: stream of verdicts.

Runtime enforcement

eventsevents Monitor

Memory
σ ∈ Σ∞

Enforcement

o � σ
o |= ϕ!

• The run should satisfy the

property.

• Input: stream of events.

• Output: stream of events

(should satisfy the property).
2

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Runtime verification and enforcement (monitors)

Runtime verification and enforcement:

• No system model.

• A correctness property ϕ.

• A monitor observes the execution of a system (e.g., trace, log, messages).

Runtime verification

verdicts eventsMonitor

Verification

σ |= ϕ?
σ ∈ Σ∞Dw ∈ D∞

• Does the run satisfy the

property?

• Input: stream of events.

• Output: stream of verdicts.

Runtime enforcement

eventsevents Monitor

Memory
σ ∈ Σ∞

Enforcement

o � σ
o |= ϕ!

• The run should satisfy the

property.

• Input: stream of events.

• Output: stream of events

(should satisfy the property).
2

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Runtime verification and enforcement (monitors)

Runtime verification and enforcement:

• No system model.

• A correctness property ϕ.

• A monitor observes the execution of a system (e.g., trace, log, messages).

Runtime verification

verdicts eventsMonitor

Verification

σ |= ϕ?
σ ∈ Σ∞Dw ∈ D∞

• Does the run satisfy the

property?

• Input: stream of events.

• Output: stream of verdicts.

Runtime enforcement

eventsevents Monitor

Memory
σ ∈ Σ∞

Enforcement

o � σ
o |= ϕ!

• The run should satisfy the

property.

• Input: stream of events.

• Output: stream of events

(should satisfy the property).
2

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement monitoring - untimed case

• Dedicated to a property ϕ.

• Possibly augmented with a

memorization mechanism.

events

finite
seq. of seq. of

finite

events

Memory

Monitor

o � σ σ ∈ Σ∗

o |= ϕ!

Enforcement

Enforcement mechanism (EM)

An EM modifies the current execution sequence (intuitively like a “filter”).

• reads an input sequence σ ∈ Σ∗.

• outputs a new sequence o ∈ Σ∗.

• endowed with a set of enforcement primitives:

• operate on the memorization mechanism,

• delete or insert events using the memory content and the current input.

An EM behaves as a function E : Σ∗ → Σ∗.

3

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Application domains and usage scenarios

• Domains: real-time embedded systems, monitor hardware failures,

communication protocols, web services and many more.

• Examples of monitor usage:

• IS: firewall to prevent DOS attack ensuring minimal delay;

• OS: suppress sensitive information when logging, ensuring a log format;

• RM: forbid incorrect system change, ensure proper usage of resources.

Input sanitiser (IS)

σ
EM S

EM (σ)

Output sanitiser (OS)

EM (σ)
S EM

σ

Reference monitor (RM)

S EM
σ

EM (σ)

Sys 1

Sys 2

input
sanitiser

S
reference
monitor

output
sanitiser

file
system

4

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Extensions

Conclusions and Future Work

5

RE of Untimed Properties

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Property Enforcement [Schneider00, LigattiBW05, BielovaM08, FalconeFM09a]

Relation between the input and output sequences should adhere:

• soundness: the output sequences should be correct wrt. the property

• transparency: the correct input sequences should not be modified

↪→ the memorization mechanism should be designed wrt. those constraints

Definition (Property enforcement)

An EM E : Σ∗ → Σ∗ for ϕ is said to enforce

• conservatively (1)

• precisely (2)

• delayed-precisely (3)

• effectively wrt. the equivalence relation ≈ (4)

∀σ ∈ Σ∗ :

∃o ∈ Σ∗ : E(σ) = o ∧ ϕ(o) (1)

(1) ∧ ϕ(σ) =⇒ σ = o ∧ ∀i < |σ| : E(σ···i) = σ···i (2)

(1) ∧ ϕ(σ) =⇒ σ = o ∧ ∀i < |σ|, ∃j ≤ i : E(σ···i) = σ···j (3)

(1) ∧ ϕ(σ) =⇒ σ ≈ o (4)

6

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Property Enforcement [Schneider00, LigattiBW05, BielovaM08, FalconeFM09a]

Relation between the input and output sequences should adhere:

• soundness: the output sequences should be correct wrt. the property

• transparency: the correct input sequences should not be modified

↪→ the memorization mechanism should be designed wrt. those constraints

Definition (Property enforcement)

An EM E : Σ∗ → Σ∗ for ϕ is said to enforce

• conservatively (1)

• precisely (2)

• delayed-precisely (3)

• effectively wrt. the equivalence relation ≈ (4)

∀σ ∈ Σ∗ :

∃o ∈ Σ∗ : E(σ) = o ∧ ϕ(o) (1)

(1) ∧ ϕ(σ) =⇒ σ = o ∧ ∀i < |σ| : E(σ···i) = σ···i (2)

(1) ∧ ϕ(σ) =⇒ σ = o ∧ ∀i < |σ|, ∃j ≤ i : E(σ···i) = σ···j (3)

(1) ∧ ϕ(σ) =⇒ σ ≈ o (4)

6

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Security Automata [Schneider00]

Edit-Automata [LigattiBW05, LigattiBW09]

Generic Enforcement Monitors [FalconeFM09a]

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Extensions

Conclusions and Future Work

7

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Security Automata (SA) [Schneider00]

First runtime mechanisms dedicated to property enforcement.

• Variant of non-deterministic Büchi automata executing in parallel with the

system.

• Mechanisms able to stop the system as soon as a violation of the property

is detected: execution truncation.

Example (Security Automata (SA))

• Prohibiting “Send” after “FileRead”

Atomic propositions: {FileRead , Sent}
• Enforcement of a finitary property Pref (a ·b · c ·d)∪Pref (b ·a ·d · c)

8

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Security Automata (SA) [Schneider00]

First runtime mechanisms dedicated to property enforcement.

• Variant of non-deterministic Büchi automata executing in parallel with the

system.

• Mechanisms able to stop the system as soon as a violation of the property

is detected: execution truncation.

Example (Security Automata (SA))

• Prohibiting “Send” after “FileRead”

Atomic propositions: {FileRead , Sent}
qnfr qfr

FileRead

not Sentnot FileRead

• Enforcement of a finitary property Pref (a ·b · c ·d)∪Pref (b ·a ·d · c)

a

b

b

a

c

d

d

c

8

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Security Automata (SA) and Decidable Safety Properties

SA cannot take decisions based on possible future executions

↪→ decisions of SA are irremediable.

SA can enforce properties s.t.:

• “good” sequences are prefix-closed,

• “bad” sequences are rejected after a finite number of steps.

Theorem (Enforcement ability of SA)

SA can enforce conservatively and precisely safety properties

Hypotheses:

• The SA can halt the target system.

• The target system cannot corrupt the SA’s transitions.

9

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Security Automata (SA) and Decidable Safety Properties

SA cannot take decisions based on possible future executions

↪→ decisions of SA are irremediable.

SA can enforce properties s.t.:

• “good” sequences are prefix-closed,

• “bad” sequences are rejected after a finite number of steps.

Theorem (Enforcement ability of SA)

SA can enforce conservatively and precisely safety properties

Hypotheses:

• The SA can halt the target system.

• The target system cannot corrupt the SA’s transitions.

9

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Security Automata [Schneider00]

Edit-Automata [LigattiBW05, LigattiBW09]

Generic Enforcement Monitors [FalconeFM09a]

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Extensions

Conclusions and Future Work

10

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Edit-Automata (EA) [LigattiBW05, LigattiBW09]

Motivated by the limitation of SA that only halt the target system

• SA are “sequence recognizers”

• EA are “sequence transformers”

EAs can

• insert an action (by either replacing the current input or inserting it)

• suppress an action (possibly memorized in the control state for later)

Variants of EA:

• Insertion Automata (only inserting actions)

• Suppression Automata (only suppressing actions)

Hypotheses: actions are asynchronous

• next action is available even if some previous actions have been suppressed

• no data-dependency between actions

Memorization of events is realized using control states

11

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Edit-Automata (EA) [LigattiBW05, LigattiBW09]

Motivated by the limitation of SA that only halt the target system

• SA are “sequence recognizers”

• EA are “sequence transformers”

EAs can

• insert an action (by either replacing the current input or inserting it)

• suppress an action (possibly memorized in the control state for later)

Variants of EA:

• Insertion Automata (only inserting actions)

• Suppression Automata (only suppressing actions)

Hypotheses: actions are asynchronous

• next action is available even if some previous actions have been suppressed

• no data-dependency between actions

Memorization of events is realized using control states

11

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Edit-Automata (EA) [LigattiBW05, LigattiBW09]

Motivated by the limitation of SA that only halt the target system

• SA are “sequence recognizers”

• EA are “sequence transformers”

EAs can

• insert an action (by either replacing the current input or inserting it)

• suppress an action (possibly memorized in the control state for later)

Variants of EA:

• Insertion Automata (only inserting actions)

• Suppression Automata (only suppressing actions)

Hypotheses: actions are asynchronous

• next action is available even if some previous actions have been suppressed

• no data-dependency between actions

Memorization of events is realized using control states

11

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Example of Edit Automaton

Example (Edit Automaton)

Delayed-precise enforcement of a simple co-safety/guarantee property

• alphabet={e1, e2}
• property= “eventually, event e1 occurs”

ε Σ∗ · e1

e2 e2 · e2 e2 · e2 · e2 · · ·

a ∈ Σa
a = e1
e1

a = e2

a
=
e 1

e 2
· e 1

a = e2

a = e1
e2 · e2 · e1

a = e2

a = e1

e2 · e2 · e2 · e1

a = e2

Remark: Automaton’s size also depends on the alphabet’s size.
12

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement abilities of EA-like enforcement mechanisms

EA-like mechanisms form a hierarchy wrt. their enforcement ability.

Theorem (Enf. ability of Ligatti Automata [LigattiThesis, BielovaM08])

Edit Automata can delayed-precisely enforce the set of infinite renewal

properties.

ϕ is an infinite renewal property over Σ∞ if:

∀σ ∈ Σ∞ :
(
ϕ(σ) ⇔ ∀σ′ ∈ Σ∗ : σ′ ≺ σ ⇒ ∃σ′′ : σ′ � σ′′ ≺ σ ∧ ϕ(σ′′)

)

13

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement abilities of EA-like enforcement mechanisms

EA-like mechanisms form a hierarchy wrt. their enforcement ability.

Theorem (Enf. ability of Ligatti Automata [LigattiThesis, BielovaM08])

Edit Automata can delayed-precisely enforce the set of infinite renewal

properties.

ϕ is an infinite renewal property over Σ∞ if:

∀σ ∈ Σ∞ :
(
ϕ(σ) ⇔ ∀σ′ ∈ Σ∗ : σ′ ≺ σ ⇒ ∃σ′′ : σ′ � σ′′ ≺ σ ∧ ϕ(σ′′)

)

13

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement abilities of EA-like enforcement mechanisms

EA-like mechanisms form a hierarchy wrt. their enforcement ability.

Theorem (Enf. ability of Ligatti Automata [LigattiThesis, BielovaM08])

Edit Automata can delayed-precisely enforce the set of infinite renewal

properties.

ϕ is an infinite renewal property over Σ∞ if:

∀σ ∈ Σ∞ :
(
ϕ(σ) ⇔ ∀σ′ ∈ Σ∗ : σ′ ≺ σ ⇒ ∃σ′′ : σ′ � σ′′ ≺ σ ∧ ϕ(σ′′)

)

13

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Security Automata [Schneider00]

Edit-Automata [LigattiBW05, LigattiBW09]

Generic Enforcement Monitors [FalconeFM09a]

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Extensions

Conclusions and Future Work

14

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Generic Enforcement Monitors (GEMs)

Definition (Generic enforcement monitor (EM(Ops)))

A GEM A↓ is a 4-tuple (QA↓ , q
A↓
init,→A↓ ,Ops) wrt. Σ parameterized by Ops

• Ops : Σ×Memory → Σ∗ ×memory

• complete transition function →A↓ : QA↓ × Σ→ QA↓ × Ops

• Enforcement operations {halt, store, dump, off}

Advantages:

• Instantiated GEMs encompass SA and Edit-Automata

• for SA: use dump,halt

• for Edit Automata: use dump, halt, store

• closer to implementation (finite-state mechanisms)

• their composition is easy to define:

• ordering enforcement operations: halt @ store @ dump @ off

• define t,u on Ops

15

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Generic Enforcement Monitors (GEMs)

Definition (Generic enforcement monitor (EM(Ops)))

A GEM A↓ is a 4-tuple (QA↓ , q
A↓
init,→A↓ ,Ops) wrt. Σ parameterized by Ops

• Ops : Σ×Memory → Σ∗ ×memory

• complete transition function →A↓ : QA↓ × Σ→ QA↓ × Ops

• Enforcement operations {halt, store, dump, off}

Advantages:

• Instantiated GEMs encompass SA and Edit-Automata

• for SA: use dump,halt

• for Edit Automata: use dump, halt, store

• closer to implementation (finite-state mechanisms)

• their composition is easy to define:

• ordering enforcement operations: halt @ store @ dump @ off

• define t,u on Ops

15

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Instantiated GEMs: some examples

Example (Enforcement of a finitary property)

Pref (a · b · c · d) ∪ Pref (b · a · d · c)
a/dump

b/dump

b/dump

a/dump

c/dump

d/dump

d/dump

c/dump

else/halt
Σ

Example (Delayed-precise enforcement of a guarantee property)

• alphabet={e1, e2}
• property= “eventually, event e1 occurs”

Example (Logging authentication requests)

Each occurrence of r auth should be:

1. written in a log file

2. answered

• either with a g auth or a d auth

• without any ops or r auth meanwhile

1 2 3

4

r auth/store log/store

log/store
{d auth, g auth}/dump

Σ \ {log}/halt

Σ/halt
{ops , r auth}/halt

Σ \ {r auth}/dump

16

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Instantiated GEMs: some examples

Example (Enforcement of a finitary property)

Pref (a · b · c · d) ∪ Pref (b · a · d · c)
a/dump

b/dump

b/dump

a/dump

c/dump

d/dump

d/dump

c/dump

else/halt
Σ

Example (Delayed-precise enforcement of a guarantee property)

• alphabet={e1, e2}
• property= “eventually, event e1 occurs” 1 2

e1/off

e2/store Σ/off

Example (Logging authentication requests)

Each occurrence of r auth should be:

1. written in a log file

2. answered

• either with a g auth or a d auth

• without any ops or r auth meanwhile

1 2 3

4

r auth/store log/store

log/store
{d auth, g auth}/dump

Σ \ {log}/halt

Σ/halt
{ops , r auth}/halt

Σ \ {r auth}/dump

16

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Instantiated GEMs: some examples

Example (Enforcement of a finitary property)

Pref (a · b · c · d) ∪ Pref (b · a · d · c)
a/dump

b/dump

b/dump

a/dump

c/dump

d/dump

d/dump

c/dump

else/halt
Σ

Example (Delayed-precise enforcement of a guarantee property)

• alphabet={e1, e2}
• property= “eventually, event e1 occurs” 1 2

e1/off

e2/store Σ/off

Example (Logging authentication requests)

Each occurrence of r auth should be:

1. written in a log file

2. answered

• either with a g auth or a d auth

• without any ops or r auth meanwhile

1 2 3

4

r auth/store log/store

log/store
{d auth, g auth}/dump

Σ \ {log}/halt

Σ/halt
{ops , r auth}/halt

Σ \ {r auth}/dump

16

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enf. ability of instantiated GEMs in the Safety-Progress classification

Theorem (Enf. ability of instantiated GEMs [FalconeFM09a])

GEMs instantiated by {halt, store, dump, off} can delayed-precisely enforce the

set of response properties within the Safety-Progress classification.

Obligation

Guarantee

Response Persistence

Reactivity

Safety
Safety

Progress

17

Specifying Timed Properties

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Specifying timed properties

Specifying the timing behavior

Allow specifying desired behavior of a system more precisely (time constraints

between events).

• After action “a”, action “b” should occur with a delay of at least 5 time

units between them.

• The system should allow consecutive requests with a delay of at least 10

time units between any two requests.

System Abstraction

• Input/output sequences are timed words:

σ = (δ1, a1) · (δ2, a2) · · · (δn, an), δi ∈ R≥0, ai ∈ Σ.

• Property:

• defined by a regular timed language ϕ ⊆ (R≥0 × Σ)∗,
• specified by a timed automaton (TA) Aϕ.

18

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Specifying timed properties

Specifying the timing behavior

Allow specifying desired behavior of a system more precisely (time constraints

between events).

• After action “a”, action “b” should occur with a delay of at least 5 time

units between them.

• The system should allow consecutive requests with a delay of at least 10

time units between any two requests.

System Abstraction

• Input/output sequences are timed words:

σ = (δ1, a1) · (δ2, a2) · · · (δn, an), δi ∈ R≥0, ai ∈ Σ.

• Property:

• defined by a regular timed language ϕ ⊆ (R≥0 × Σ)∗,
• specified by a timed automaton (TA) Aϕ.

18

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Specifying timed properties

Specifying the timing behavior

Allow specifying desired behavior of a system more precisely (time constraints

between events).

• After action “a”, action “b” should occur with a delay of at least 5 time

units between them.

• The system should allow consecutive requests with a delay of at least 10

time units between any two requests.

System Abstraction

• Input/output sequences are timed words:

σ = (δ1, a1) · (δ2, a2) · · · (δn, an), δi ∈ R≥0, ai ∈ Σ.

• Property:

• defined by a regular timed language ϕ ⊆ (R≥0 × Σ)∗,
• specified by a timed automaton (TA) Aϕ.

18

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Specifying timed properties

Specifying the timing behavior

Allow specifying desired behavior of a system more precisely (time constraints

between events).

• After action “a”, action “b” should occur with a delay of at least 5 time

units between them.

• The system should allow consecutive requests with a delay of at least 10

time units between any two requests.

System Abstraction

• Input/output sequences are timed words:

σ = (δ1, a1) · (δ2, a2) · · · (δn, an), δi ∈ R≥0, ai ∈ Σ.

• Property:

• defined by a regular timed language ϕ ⊆ (R≥0 × Σ)∗,
• specified by a timed automaton (TA) Aϕ.

18

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Specifying timed properties

Specifying the timing behavior

Allow specifying desired behavior of a system more precisely (time constraints

between events).

• After action “a”, action “b” should occur with a delay of at least 5 time

units between them.

• The system should allow consecutive requests with a delay of at least 10

time units between any two requests.

System Abstraction

• Input/output sequences are timed words:

σ = (δ1, a1) · (δ2, a2) · · · (δn, an), δi ∈ R≥0, ai ∈ Σ.

• Property:

• defined by a regular timed language ϕ ⊆ (R≥0 × Σ)∗,
• specified by a timed automaton (TA) Aϕ.

18

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Specifying timed properties

Safety, co-safety and response properties specified by TAs

19

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Specifying timed properties

Safety, co-safety and response properties specified by TAs

19

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Specifying timed properties

Safety, co-safety and response properties specified by TAs

Safety: nothing bad should ever happen (prefix closed).

l0 l1 l2

Σ \ {req}
req,

x := 0

Σ \ {req}

req, x ≥ 5,
x := 0

req, x<5

Σ

• Σ ⊇ {req}
• “A delay of 5 t.u. between any two

requests.”

19

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Specifying timed properties

Safety, co-safety and response properties specified by TAs

Co-safety: something good will eventually happen within a finite amount of

time (extension closed).

l0 l1

l2

l3
req, x := 0

Σ \ {req}

Σ \ {gr};
g, x < 10 ∨ x > 15

gr,
10≤x ≤15

Σ

Σ • Σ ⊇ {req, gr}
• “A request, and then a grant should

arrive between 10 and 15 t.u.”

19

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Specifying timed properties

Safety, co-safety and response properties specified by TAs

Response: any property.

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Σ ⊇ {req, gr}
• “Requests and grants should

alternate in this order with a delay

between 15 and 20 t.u between the

request and the grant.”

19

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Example: response property

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Σ = {req, gr}
• Input time word:

(3, req) · (15, gr) · (5, req) ·
(19, gr)

ε |= ϕ.

(3, req) 6|= ϕ.

(3, req) · (15, gr) |= ϕ.

(3, req) · (15, gr) · (5, req) 6|= ϕ.

(3, req) · (15, gr) · (5, req) · (19, gr) |= ϕ.

Remark: response properties are neither prefix nor extension closed.

20

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Example: response property

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Σ = {req, gr}
• Input time word:

(3, req) · (15, gr) · (5, req) ·
(19, gr)

ε |= ϕ.

(3, req) 6|= ϕ.

(3, req) · (15, gr) |= ϕ.

(3, req) · (15, gr) · (5, req) 6|= ϕ.

(3, req) · (15, gr) · (5, req) · (19, gr) |= ϕ.

Remark: response properties are neither prefix nor extension closed.

20

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Example: response property

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Σ = {req, gr}
• Input time word:

(3, req) · (15, gr) · (5, req) ·
(19, gr)

ε |= ϕ.

(3, req) 6|= ϕ.

(3, req) · (15, gr) |= ϕ.

(3, req) · (15, gr) · (5, req) 6|= ϕ.

(3, req) · (15, gr) · (5, req) · (19, gr) |= ϕ.

Remark: response properties are neither prefix nor extension closed.

20

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Example: response property

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Σ = {req, gr}
• Input time word:

(3, req) · (15, gr) · (5, req) ·
(19, gr)

ε |= ϕ.

(3, req) 6|= ϕ.

(3, req) · (15, gr) |= ϕ.

(3, req) · (15, gr) · (5, req) 6|= ϕ.

(3, req) · (15, gr) · (5, req) · (19, gr) |= ϕ.

Remark: response properties are neither prefix nor extension closed.

20

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Example: response property

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Σ = {req, gr}
• Input time word:

(3, req) · (15, gr) · (5, req) ·
(19, gr)

ε |= ϕ.

(3, req) 6|= ϕ.

(3, req) · (15, gr) |= ϕ.

(3, req) · (15, gr) · (5, req) 6|= ϕ.

(3, req) · (15, gr) · (5, req) · (19, gr) |= ϕ.

Remark: response properties are neither prefix nor extension closed.

20

RE of Timed Properties

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Requirements on an Enforcement Mechanism

Functional Definition of an Enforcement Mechanism

Operational Description of an Enforcement Mechanism

Algorithmic Description of an Enforcement Mechanism

A note on Non-enforceable Properties

Extensions

Conclusions and Future Work

21

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Problem statement

Given some (regular) timed property ϕ:

eventsevents
timed timed

timed Memory

Mechanism

o |= ϕ!
σ ∈ (R≥0 × Σ)∗

Enforcement

o �d σ

What can an enforcement mechanism do?

• CANNOT insert events.

• CANNOT change the order of events.

• CAN increase the delay between actions.

• CAN delete events.

↪→ How can we obtain an enforcement mechanism as a “delayer” with

suppression for ϕ.

22

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Problem tackled and Contributions

ϕ is a timed property

eventsevents
timed timed

timed Memory

Mechanism

o |= ϕ!
σ ∈ (R≥0 × Σ)∗

Enforcement

o �d σ

A formal framework for runtime enforcement of timed properties

• Any regular timed property ϕ as input.

• Enforcement mechanisms i) add additional delays between actions to

satisfy ϕ, ii) suppress actions. – work as “delayers” with suppression.

• A general definition of mechanisms for regular properties.

• Optimizations for safety and co-safety properties.

• Enforcement mechanisms at several levels of abstraction (facilitating the

design and implementation of such mechanisms).

• Exhibiting a notion of non-enforceable properties.
23

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Problem tackled and Contributions

ϕ is a timed property

eventsevents
timed timed

timed Memory

Mechanism

o |= ϕ!
σ ∈ (R≥0 × Σ)∗

Enforcement

o �d σ

A formal framework for runtime enforcement of timed properties

• Any regular timed property ϕ as input.

• Enforcement mechanisms i) add additional delays between actions to

satisfy ϕ, ii) suppress actions. – work as “delayers” with suppression.

• A general definition of mechanisms for regular properties.

• Optimizations for safety and co-safety properties.

• Enforcement mechanisms at several levels of abstraction (facilitating the

design and implementation of such mechanisms).

• Exhibiting a notion of non-enforceable properties.
23

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Problem tackled and Contributions

ϕ is a timed property

eventsevents
timed timed

timed Memory

Mechanism

o |= ϕ!
σ ∈ (R≥0 × Σ)∗

Enforcement

o �d σ

A formal framework for runtime enforcement of timed properties

• Any regular timed property ϕ as input.

• Enforcement mechanisms i) add additional delays between actions to

satisfy ϕ, ii) suppress actions. – work as “delayers” with suppression.

• A general definition of mechanisms for regular properties.

• Optimizations for safety and co-safety properties.

• Enforcement mechanisms at several levels of abstraction (facilitating the

design and implementation of such mechanisms).

• Exhibiting a notion of non-enforceable properties.
23

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Problem tackled and Contributions

ϕ is a timed property

eventsevents
timed timed

timed Memory

Mechanism

o |= ϕ!
σ ∈ (R≥0 × Σ)∗

Enforcement

o �d σ

A formal framework for runtime enforcement of timed properties

• Any regular timed property ϕ as input.

• Enforcement mechanisms i) add additional delays between actions to

satisfy ϕ, ii) suppress actions. – work as “delayers” with suppression.

• A general definition of mechanisms for regular properties.

• Optimizations for safety and co-safety properties.

• Enforcement mechanisms at several levels of abstraction (facilitating the

design and implementation of such mechanisms).

• Exhibiting a notion of non-enforceable properties.
23

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Problem tackled and Contributions

ϕ is a timed property

eventsevents
timed timed

timed Memory

Mechanism

o |= ϕ!
σ ∈ (R≥0 × Σ)∗

Enforcement

o �d σ

A formal framework for runtime enforcement of timed properties

• Any regular timed property ϕ as input.

• Enforcement mechanisms i) add additional delays between actions to

satisfy ϕ, ii) suppress actions. – work as “delayers” with suppression.

• A general definition of mechanisms for regular properties.

• Optimizations for safety and co-safety properties.

• Enforcement mechanisms at several levels of abstraction (facilitating the

design and implementation of such mechanisms).

• Exhibiting a notion of non-enforceable properties.
23

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Problem tackled and Contributions

ϕ is a timed property

eventsevents
timed timed

timed Memory

Mechanism

o |= ϕ!
σ ∈ (R≥0 × Σ)∗

Enforcement

o �d σ

A formal framework for runtime enforcement of timed properties

• Any regular timed property ϕ as input.

• Enforcement mechanisms i) add additional delays between actions to

satisfy ϕ, ii) suppress actions. – work as “delayers” with suppression.

• A general definition of mechanisms for regular properties.

• Optimizations for safety and co-safety properties.

• Enforcement mechanisms at several levels of abstraction (facilitating the

design and implementation of such mechanisms).

• Exhibiting a notion of non-enforceable properties.
23

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Problem tackled and Contributions

ϕ is a timed property

eventsevents
timed timed

timed Memory

Mechanism

o |= ϕ!
σ ∈ (R≥0 × Σ)∗

Enforcement

o �d σ

A formal framework for runtime enforcement of timed properties

• Any regular timed property ϕ as input.

• Enforcement mechanisms i) add additional delays between actions to

satisfy ϕ, ii) suppress actions. – work as “delayers” with suppression.

• A general definition of mechanisms for regular properties.

• Optimizations for safety and co-safety properties.

• Enforcement mechanisms at several levels of abstraction (facilitating the

design and implementation of such mechanisms).

• Exhibiting a notion of non-enforceable properties.
23

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Main challenges when enforcing timed properties

Main challenges when (possibly) correcting an input sequence:

• safety properties: after each event, the decision is made (i.e., whether it

can be corrected or not).

• co-safety properties: after each event, we check starting from the first

event, whether the sequence read so far can be corrected or not.

• response properties:

• we cannot decide for each event soon after it is observed;

• we do not check/correct from the first event since we want to correct and

output chunks of sequences as soon as possible.

l0 l1 l2

Σ \ {req}
req,

x := 0

Σ \ {req}

req, x ≥ 5,
x := 0

req, x<5

Σ

24

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Main challenges when enforcing timed properties

Main challenges when (possibly) correcting an input sequence:

• safety properties: after each event, the decision is made (i.e., whether it

can be corrected or not).

• co-safety properties: after each event, we check starting from the first

event, whether the sequence read so far can be corrected or not.

• response properties:

• we cannot decide for each event soon after it is observed;

• we do not check/correct from the first event since we want to correct and

output chunks of sequences as soon as possible.

l0 l1 l2

Σ \ {req}
req,

x := 0

Σ \ {req}

req, x ≥ 5,
x := 0

req, x<5

Σ

l0 l1

l2

l3
req, x := 0

Σ \ {req}

Σ \ {gr};
g, x < 10 ∨ x > 15

gr,
10≤x ≤15

Σ

Σ

24

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Main challenges when enforcing timed properties

Main challenges when (possibly) correcting an input sequence:

• safety properties: after each event, the decision is made (i.e., whether it

can be corrected or not).

• co-safety properties: after each event, we check starting from the first

event, whether the sequence read so far can be corrected or not.

• response properties:

• we cannot decide for each event soon after it is observed;

• we do not check/correct from the first event since we want to correct and

output chunks of sequences as soon as possible.

l0 l1 l2

Σ \ {req}
req,

x := 0

Σ \ {req}

req, x ≥ 5,
x := 0

req, x<5

Σ

l0 l1

l2

l3
req, x := 0

Σ \ {req}

Σ \ {gr};
g, x < 10 ∨ x > 15

gr,
10≤x ≤15

Σ

Σ
l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

24

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Summary of the approach

ϕ

Enforcement Mechanism

Soundness
Transparency
Optimality

output input

• Requirements for any enforcement mechanism for ϕ.

• Functional definition (satisfies the requirements):

• description of the input/output behavior ;

• composition of 3 functions: process input, computing the delayed timed

word, and process output.

• Enforcement monitor:

• description of the operational behavior,

• a rule-based transition system with enforcement operations.

• Implementation: translation of the EM semantic rules into algorithms.
25

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Summary of the approach

ϕ, t

output input

Functional Definition

Output

Fct

Delay&Suppr

Fct

Input

Fct

• Requirements for any enforcement mechanism for ϕ.

• Functional definition (satisfies the requirements):

• description of the input/output behavior ;

• composition of 3 functions: process input, computing the delayed timed

word, and process output.

• Enforcement monitor:

• description of the operational behavior,

• a rule-based transition system with enforcement operations.

• Implementation: translation of the EM semantic rules into algorithms.
25

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Summary of the approach

ϕ

Enforcement Monitor
output input

• Requirements for any enforcement mechanism for ϕ.

• Functional definition (satisfies the requirements):

• description of the input/output behavior ;

• composition of 3 functions: process input, computing the delayed timed

word, and process output.

• Enforcement monitor:

• description of the operational behavior,

• a rule-based transition system with enforcement operations.

• Implementation: translation of the EM semantic rules into algorithms.

25

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Summary of the approach

ϕ

output input

Implementation

Dump

Process
Memory

Store

Process

• Requirements for any enforcement mechanism for ϕ.

• Functional definition (satisfies the requirements):

• description of the input/output behavior ;

• composition of 3 functions: process input, computing the delayed timed

word, and process output.

• Enforcement monitor:

• description of the operational behavior,

• a rule-based transition system with enforcement operations.

• Implementation: translation of the EM semantic rules into algorithms.

25

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Requirements on an Enforcement Mechanism

Functional Definition of an Enforcement Mechanism

Operational Description of an Enforcement Mechanism

Algorithmic Description of an Enforcement Mechanism

A note on Non-enforceable Properties

Extensions

Conclusions and Future Work

26

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements on an Enforcement Mechanism

Specified on an enforcement function for ϕ

Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗.

where for σ ∈ (R≥0 × Σ)∗ and t ∈ R≥0:

Eϕ(σ, t) is the sequence produced by the enforcement mechanism

• at time t,

• if σ is the sequence read as input.

27

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements on an Enforcement Mechanism – physical constraints

Physical constraints: The input and output are timed words. The output

is produced in a “streaming fashion”1

actions

time
Eϕ(σ, t)

σ

Phy1 t ≤ t′ =⇒ Eϕ(σ, t) 4 Eϕ(σ, t′).

Phy2 σ 4 σ′ =⇒ Eϕ(σ, t) 4 Eϕ(σ′, t).
1Implicit universal quantification over σ and t.

28

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements on an Enforcement Mechanism – soundness

Soundness: The output is (eventually) correct

Snd Eϕ(σ, t) 6= ε =⇒ ∃t′ ≥ t : Eϕ(σ, t′) |= ϕ.

actions

time
Eϕ(σ, t)

σ

ϕ

29

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements on an Enforcement Mechanism – transparency

Transparency: (prefix) relation between the input and output sequences

30

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements on an Enforcement Mechanism – transparency

Transparency: (prefix) relation between the input and output sequences

What the enforcement mechanism observes at time t is

obs(σ, t) = max4{σ′ | σ′ 4 σ ∧ time(σ′) ≤ t}

↪→ the (max) prefix of σ that can be observed with t t.u.

actions

time
Eϕ(σ, t)

σ

t

30

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements on an Enforcement Mechanism – transparency

Transparency: (prefix) relation between the input and output sequences

Tr Eϕ(σ, t) 4d obs(σ, t), where σ′ 4d σ means:

actions

time
Eϕ(σ, t)

σ

e1
e2

e3

e4

e1

e2

e3

e4

actions

time

Eϕ(σ, t)

δ′1

δ′2

δ′3

δ′4

δ′5

σ

δ1

δ2

δ3

δ4

δ5

30

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements on an Enforcement Mechanism – optimality

Optimality: output is produced ASAP . . . but not too soon

31

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements on an Enforcement Mechanism – optimality

Optimality: output is produced ASAP . . . but not too soon

actions

time
Eϕ(σ, t)

σ

ϕ

31

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements on an Enforcement Mechanism – optimality

Optimality: output is produced ASAP . . . but not too soon

actions

time
ideal sequence

σ

31

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements on an Enforcement Mechanism – optimality

Optimality: output is produced ASAP . . . but not too soon

actions

time
ideal sequence

σ

time needed
to read the chunk

chunk in memory 31

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements on an Enforcement Mechanism – optimality

Optimality: output is produced ASAP . . . but not too soon

actions

time

Eϕ(σ, t)

ideal sequence

σ

time needed
to read the chunk

≤
actual delay

chunk in memory

actual delay

ideal delay

31

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Requirements on an Enforcement Mechanism

Functional Definition of an Enforcement Mechanism

Operational Description of an Enforcement Mechanism

Algorithmic Description of an Enforcement Mechanism

A note on Non-enforceable Properties

Extensions

Conclusions and Future Work

32

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Functional definition (1)

The functional definition describes the mechanism as a function

Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗.

Enforcement
function

ϕ

E(σ, t) |= ϕ σ, t

ϕ

Eϕ(σ, t) σ

Functional Definition

Output

Fct

Delay&Suppr

Fct

Input

Fct

Input and output functions are realized by the observation function:

obs(σ, t) = max4{σ′ | σ′ 4 σ ∧ time(σ′) ≤ t}.
33

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Functional definition (1)

The functional definition describes the mechanism as a function

Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗.

Enforcement
function

ϕ

E(σ, t) |= ϕ σ, t

ϕ

Eϕ(σ, t) σ

Functional Definition

Output

Fct

Delay&Suppr

Fct

Input

Fct

Input and output functions are realized by the observation function:

obs(σ, t) = max4{σ′ | σ′ 4 σ ∧ time(σ′) ≤ t}.
33

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Functional definition (1)

The functional definition describes the mechanism as a function

Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗.

Enforcement
function

ϕ

E(σ, t) |= ϕ σ, t

ϕ

Eϕ(σ, t) σ

Functional Definition

Output

Fct

Delay&Suppr

Fct

Input

Fct

Input and output functions are realized by the observation function:

obs(σ, t) = max4{σ′ | σ′ 4 σ ∧ time(σ′) ≤ t}.
33

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

(Simplified) Functional definition (2) – no suppression

Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗

Eϕ(σ, t) = obs
(

Π1

(
storeϕ(obs(σ, t))

)
, t
)
.

storeϕ : (R≥0 × Σ)∗ → (R≥0 × Σ)∗ × (R≥0 × Σ)∗

storeϕ(σ) is a pair:

1. delayed correct prefix of σ,

2. suffix of σ for which delays still have to be computed.

34

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

(Simplified) Functional definition (2) – no suppression

Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗

Eϕ(σ, t) = obs
(

Π1

(
storeϕ(obs(σ, t))

)
, t
)
.

storeϕ : (R≥0 × Σ)∗ → (R≥0 × Σ)∗ × (R≥0 × Σ)∗

storeϕ(σ) is a pair:

1. delayed correct prefix of σ,

2. suffix of σ for which delays still have to be computed.

34

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

(Simplified) Functional definition (3) – no suppression

Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗

Eϕ(σ, t) = obs
(

Π1

(
storeϕ(obs(σ, t))

)
, t
)
.

storeϕ : (R≥0 × Σ)∗ → (R≥0 × Σ)∗ × (R≥0 × Σ)∗

storeϕ(ε) = (ε, ε)

Suppose (σs , σc) = storeϕ(σ)

storeϕ(σ · (δ, a)) =

(σs ·min�lex
K , ε) if K 6= ∅

(σs , σc · (δ, a)) otherwise

with

K = κϕ(time(σ) + δ, σs , σc · (δ, a))

κϕ(T , σs , σc) = {w ∈ (R≥0 × Σ)∗ | w 4d σc ∧ |w | = |σc |
∧σs ·w |= ϕ∧delay(w(1)) ≥ T−time(σs))}

Intuitively, K is the set of possible corrected factors of σ · (δ, a) between

positions |σs | and |σc |+ 1 with a delay for the first event greater than

time(σc · (δ, a)).
35

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

(Simplified) Functional definition (3) – no suppression

Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗

Eϕ(σ, t) = obs
(

Π1

(
storeϕ(obs(σ, t))

)
, t
)
.

storeϕ : (R≥0 × Σ)∗ → (R≥0 × Σ)∗ × (R≥0 × Σ)∗

storeϕ(ε) = (ε, ε)

Suppose (σs , σc) = storeϕ(σ)

storeϕ(σ · (δ, a)) =

(σs ·min�lex
K , ε) if K 6= ∅

(σs , σc · (δ, a)) otherwise

with

K = κϕ(time(σ) + δ, σs , σc · (δ, a))

κϕ(T , σs , σc) = {w ∈ (R≥0 × Σ)∗ | w 4d σc ∧ |w | = |σc |
∧σs ·w |= ϕ∧delay(w(1)) ≥ T−time(σs))}

Intuitively, K is the set of possible corrected factors of σ · (δ, a) between

positions |σs | and |σc |+ 1 with a delay for the first event greater than

time(σc · (δ, a)).
35

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

(Simplified) Functional definition (3) – no suppression

Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗

Eϕ(σ, t) = obs
(

Π1

(
storeϕ(obs(σ, t))

)
, t
)
.

storeϕ : (R≥0 × Σ)∗ → (R≥0 × Σ)∗ × (R≥0 × Σ)∗

storeϕ(ε) = (ε, ε)

Suppose (σs , σc) = storeϕ(σ)

storeϕ(σ · (δ, a)) =

(σs ·min�lex
K , ε) if K 6= ∅

(σs , σc · (δ, a)) otherwise

with

K = κϕ(time(σ) + δ, σs , σc · (δ, a))

κϕ(T , σs , σc) = {w ∈ (R≥0 × Σ)∗ | w 4d σc ∧ |w | = |σc |
∧σs ·w |= ϕ∧delay(w(1)) ≥ T−time(σs))}

Intuitively, K is the set of possible corrected factors of σ · (δ, a) between

positions |σs | and |σc |+ 1 with a delay for the first event greater than

time(σc · (δ, a)).
35

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

(Simplified) Functional definition (3) – no suppression

Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗

Eϕ(σ, t) = obs
(

Π1

(
storeϕ(obs(σ, t))

)
, t
)
.

storeϕ : (R≥0 × Σ)∗ → (R≥0 × Σ)∗ × (R≥0 × Σ)∗

storeϕ(ε) = (ε, ε)

Suppose (σs , σc) = storeϕ(σ)

storeϕ(σ · (δ, a)) =

(σs ·min�lex
K , ε) if K 6= ∅

(σs , σc · (δ, a)) otherwise

with

K = κϕ(time(σ) + δ, σs , σc · (δ, a))

κϕ(T , σs , σc) = {w ∈ (R≥0 × Σ)∗ | w 4d σc ∧ |w | = |σc |
∧σs ·w |= ϕ∧delay(w(1)) ≥ T−time(σs))}

Intuitively, K is the set of possible corrected factors of σ · (δ, a) between

positions |σs | and |σc |+ 1 with a delay for the first event greater than

time(σc · (δ, a)).
35

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

(Simplified) Functional definition (3) – no suppression

Eϕ : (R≥0 × Σ)∗ × R≥0 → (R≥0 × Σ)∗

Eϕ(σ, t) = obs
(

Π1

(
storeϕ(obs(σ, t))

)
, t
)
.

storeϕ : (R≥0 × Σ)∗ → (R≥0 × Σ)∗ × (R≥0 × Σ)∗

storeϕ(ε) = (ε, ε)

Suppose (σs , σc) = storeϕ(σ)

storeϕ(σ · (δ, a)) =

(σs ·min�lex
K , ε) if K 6= ∅

(σs , σc · (δ, a)) otherwise

with

K = κϕ(time(σ) + δ, σs , σc · (δ, a))

κϕ(T , σs , σc) = {w ∈ (R≥0 × Σ)∗ | w 4d σc ∧ |w | = |σc |
∧σs ·w |= ϕ∧delay(w(1)) ≥ T−time(σs))}

Intuitively, K is the set of possible corrected factors of σ · (δ, a) between

positions |σs | and |σc |+ 1 with a delay for the first event greater than

time(σc · (δ, a)).
35

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Functional definition: Example

Σ = {req, gr}.
σ = (3, req) · (10, gr) · (3, req) · (5, req).

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 13[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [13, 16[

obs(σ, t) = (3, req) · (10, gr)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), ε)

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [16, 21[

obs(σ, t) = (3, req) · (10, gr) · (3, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [21,∞]

obs(σ, t) = (3, req) · (10, gr) · (3, req) · (5, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req) · (5, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t) 36

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Functional definition: Example

Σ = {req, gr}.
σ = (3, req) · (10, gr) · (3, req) · (5, req).

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 13[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [13, 16[

obs(σ, t) = (3, req) · (10, gr)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), ε)

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [16, 21[

obs(σ, t) = (3, req) · (10, gr) · (3, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [21,∞]

obs(σ, t) = (3, req) · (10, gr) · (3, req) · (5, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req) · (5, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t) 36

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Functional definition: Example

Σ = {req, gr}.
σ = (3, req) · (10, gr) · (3, req) · (5, req).

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 13[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [13, 16[

obs(σ, t) = (3, req) · (10, gr)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), ε)

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [16, 21[

obs(σ, t) = (3, req) · (10, gr) · (3, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [21,∞]

obs(σ, t) = (3, req) · (10, gr) · (3, req) · (5, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req) · (5, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t) 36

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Functional definition: Example

Σ = {req, gr}.
σ = (3, req) · (10, gr) · (3, req) · (5, req).

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 13[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [13, 16[

obs(σ, t) = (3, req) · (10, gr)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), ε)

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [16, 21[

obs(σ, t) = (3, req) · (10, gr) · (3, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [21,∞]

obs(σ, t) = (3, req) · (10, gr) · (3, req) · (5, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req) · (5, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t) 36

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Functional definition: Example

Σ = {req, gr}.
σ = (3, req) · (10, gr) · (3, req) · (5, req).

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 13[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [13, 16[

obs(σ, t) = (3, req) · (10, gr)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), ε)

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [16, 21[

obs(σ, t) = (3, req) · (10, gr) · (3, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [21,∞]

obs(σ, t) = (3, req) · (10, gr) · (3, req) · (5, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req) · (5, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t) 36

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Functional definition: Example

Σ = {req, gr}.
σ = (3, req) · (10, gr) · (3, req) · (5, req).

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 13[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [13, 16[

obs(σ, t) = (3, req) · (10, gr)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), ε)

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [16, 21[

obs(σ, t) = (3, req) · (10, gr) · (3, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t)

t ∈ [21,∞]

obs(σ, t) = (3, req) · (10, gr) · (3, req) · (5, req)

storeϕ(obs(σ, t)) = ((13, req) · (15, gr), (3, req) · (5, req))

Eϕ(σ, t) = obs((13, req) · (15, gr), t) 36

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

The enforcement function satisfies the requirements

Proposition: Enforcement function vs requirements

The proposed definition of enforcement function satisfies the soundness,

transparency, and optimality requirements.

Proof

By induction on the length of the input sequence.

See papers.

37

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Requirements on an Enforcement Mechanism

Functional Definition of an Enforcement Mechanism

Operational Description of an Enforcement Mechanism

Algorithmic Description of an Enforcement Mechanism

A note on Non-enforceable Properties

Extensions

Conclusions and Future Work

38

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement monitor

EMϕ

Memory

E(σ, t) |= ϕ σ

A rule-based transition system:

• configurations keep track of
• the prefix of σ that has been corrected but yet to be output (“good

memory”),

• the suffix of σ that cannot be corrected (“bad memory”)

• a clock reset at the moment of the last input event (“store clock”),

• a clock reset at the moment of the last output event (“dump clock”),

• a state in the semantics of the TA;

• an initial configuration;

• rule-based transitions executing enforcement operations (cf. next slide).

Remark 1: for safety and co-safety, some memories can be discarded.

Remark 2: formal definition in papers.

39

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement monitor

EMϕ

Memory

E(σ, t) |= ϕ σ

A rule-based transition system:

• configurations keep track of
• the prefix of σ that has been corrected but yet to be output (“good

memory”),

• the suffix of σ that cannot be corrected (“bad memory”)

• a clock reset at the moment of the last input event (“store clock”),

• a clock reset at the moment of the last output event (“dump clock”),

• a state in the semantics of the TA;

• an initial configuration;

• rule-based transitions executing enforcement operations (cf. next slide).

Remark 1: for safety and co-safety, some memories can be discarded.

Remark 2: formal definition in papers.

39

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement monitor

EMϕ

Memory

E(σ, t) |= ϕ σ

A rule-based transition system:

• configurations keep track of
• the prefix of σ that has been corrected but yet to be output (“good

memory”),

• the suffix of σ that cannot be corrected (“bad memory”)

• a clock reset at the moment of the last input event (“store clock”),

• a clock reset at the moment of the last output event (“dump clock”),

• a state in the semantics of the TA;

• an initial configuration;

• rule-based transitions executing enforcement operations (cf. next slide).

Remark 1: for safety and co-safety, some memories can be discarded.

Remark 2: formal definition in papers.

39

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement monitor

EMϕ

Memory

E(σ, t) |= ϕ σ

A rule-based transition system:

• configurations keep track of
• the prefix of σ that has been corrected but yet to be output (“good

memory”),

• the suffix of σ that cannot be corrected (“bad memory”)

• a clock reset at the moment of the last input event (“store clock”),

• a clock reset at the moment of the last output event (“dump clock”),

• a state in the semantics of the TA;

• an initial configuration;

• rule-based transitions executing enforcement operations (cf. next slide).

Remark 1: for safety and co-safety, some memories can be discarded.

Remark 2: formal definition in papers.

39

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement monitor: operations

1. store-ϕ

• when a new event is received and it cannot make ϕ satisfied by delaying.

• updates “bad” memory and store clock

2. store-ϕ

• when a new event is received and it can make ϕ satisfied by delaying

• updates “good” memory and store clock

3. suppress

• when an event is received and prevents ϕ’s satisfaction

4. dump

• when an event in the good memory can be released

• updates “good” memory and dump clock

5. idle

• when no other rule applies (i.e., when time elapses and nothing happens)

• updates dump and store clocks

40

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement monitor: operations

1. store-ϕ

• when a new event is received and it cannot make ϕ satisfied by delaying.

• updates “bad” memory and store clock

2. store-ϕ

• when a new event is received and it can make ϕ satisfied by delaying

• updates “good” memory and store clock

3. suppress

• when an event is received and prevents ϕ’s satisfaction

4. dump

• when an event in the good memory can be released

• updates “good” memory and dump clock

5. idle

• when no other rule applies (i.e., when time elapses and nothing happens)

• updates dump and store clocks

40

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement monitor: operations

1. store-ϕ

• when a new event is received and it cannot make ϕ satisfied by delaying.

• updates “bad” memory and store clock

2. store-ϕ

• when a new event is received and it can make ϕ satisfied by delaying

• updates “good” memory and store clock

3. suppress

• when an event is received and prevents ϕ’s satisfaction

4. dump

• when an event in the good memory can be released

• updates “good” memory and dump clock

5. idle

• when no other rule applies (i.e., when time elapses and nothing happens)

• updates dump and store clocks

40

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement monitor: operations

1. store-ϕ

• when a new event is received and it cannot make ϕ satisfied by delaying.

• updates “bad” memory and store clock

2. store-ϕ

• when a new event is received and it can make ϕ satisfied by delaying

• updates “good” memory and store clock

3. suppress

• when an event is received and prevents ϕ’s satisfaction

4. dump

• when an event in the good memory can be released

• updates “good” memory and dump clock

5. idle

• when no other rule applies (i.e., when time elapses and nothing happens)

• updates dump and store clocks

40

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement monitor: operations

1. store-ϕ

• when a new event is received and it cannot make ϕ satisfied by delaying.

• updates “bad” memory and store clock

2. store-ϕ

• when a new event is received and it can make ϕ satisfied by delaying

• updates “good” memory and store clock

3. suppress

• when an event is received and prevents ϕ’s satisfaction

4. dump

• when an event in the good memory can be released

• updates “good” memory and dump clock

5. idle

• when no other rule applies (i.e., when time elapses and nothing happens)

• updates dump and store clocks

40

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: correctness

Implementation relation between Enforcement Monitor and Enforcement

Function

Given ϕ, at any time t, the input/output behavior of the synthesized

enforcement monitor is the same as one of the corresponding enforcement

function.

Proof

By induction on the length of the input sequence and “integrating the behavior

of enforcement monitors over time”.

See papers.

Corollary

Enforcement Monitors respect soundness, transparency, and optimality.

41

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 0 - Executed operation: none

ε ←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory: ε

• Bad Memory: ε

• State: (l0, 0)

← (3, r) · (10, g) ·
(3, r) · (5, r)

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 3 - Executed operation: idle(3)

ε ←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory: ε

• Bad Memory: ε

• State: (l0, 3)

← (3, r) · (10, g) ·
(3, r) · (5, r)

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 3 - Executed operation: store-ϕ

ε ←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory: ε

• Bad Memory: (3, r)

• State: (l0, 0)

←(10, g) · (3, r) · (5, r)

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 13 - Executed operation: idle(10)

ε ←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory: ε

• Bad Memory: (3, r)

• State: (l0, 0)

←(10, g) · (3, r) · (5, r)

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 13 - Executed operation: store-ϕ

ε ←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory:

(13, r) · (15, g)

• Bad Memory: ε

• State: (l0, 0)

← (3, r) · (5, r)

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 13 - Executed operation: dump

(13, r) ←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory: (15, g)

• Bad Memory: ε

• State: (l0, 15)

← (3, r) · (5, r)

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 16 - Executed operation: idle(3)

(13, r) ←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory: (15, g)

• Bad Memory: ε

• State: (l0, 15)

← (3, r) · (5, r)

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 16 - Executed operation: store-ϕ

(13, r) ←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory: (15, g)

• Bad Memory: (3, r)

• State: (l0, 15)

← (5, r)

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 21 - Executed operation: idle(5)

(13, r) ←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory: (15, g)

• Bad Memory: (3, r)

• State: (l0, 15)

← (5, r)

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 21 - Executed operation: suppress

(13, r) ←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory: (15, g)

• Bad Memory: (3, r)

• State: (l0, 15)

← ε

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 28 - Executed operation: idle(7)

(13, r) ←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory: (15, g)

• Bad Memory: (3, r)

• State: (l0, 15)

← ε

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement Monitor: example

t = 28 - Executed operation: dump

(13, r) · (15, g)←

l0 l1

l2

Σ \ {req, gr} req,
x := 0

gr

Σ \ {req, gr}

Σ \ {gr};
gr, x < 15 ∨ x > 20

gr, 15 ≤ x ≤ 20;
x := 0

Σ

• Good Memory: ε

• Bad Memory: (3, r)

• State: (l0, 15)

← ε

42

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Requirements on an Enforcement Mechanism

Functional Definition of an Enforcement Mechanism

Operational Description of an Enforcement Mechanism

Algorithmic Description of an Enforcement Mechanism

A note on Non-enforceable Properties

Extensions

Conclusions and Future Work

43

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Implementation – simplified algorithms

Enforcement Monitor

Dump
Process

Store
Process

Memory(σs)

σcE(σ, t) σ, t

Used primitives:

• await(condition), wait(time)

• post(loc, valuation, tw)

• update(loc, valuation, tw)

Algorithm: DumpProcess
d← 0
while tt do
await (σs 6= ε)
(δ, a) ← dequeue (σs)
wait (δ − d)
dump (a)
d← 0

end while

Algorithm: StoreProcess
(l, ν)← (l0, [X ← 0])
σs, σc ← ε
while tt do
(δ, a)← await (event)
σc ← σc · (δ, a)
(σ′

c, isPath)← update(l, ν, σc)
if isPath = tt then
σs ← σs · σ′

c

(l, ν)← post(l, ν, σ′
c)

σc ← ε
end if

end while

44

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Implementation – simplified algorithms

Enforcement Monitor

Dump
Process

Store
Process

Memory(σs)

σcE(σ, t) σ, t

Used primitives:

• await(condition), wait(time)

• post(loc, valuation, tw)

• update(loc, valuation, tw)

Algorithm: DumpProcess
d← 0
while tt do
await (σs 6= ε)
(δ, a) ← dequeue (σs)
wait (δ − d)
dump (a)
d← 0

end while

Algorithm: StoreProcess
(l, ν)← (l0, [X ← 0])
σs, σc ← ε
while tt do
(δ, a)← await (event)
σc ← σc · (δ, a)
(σ′

c, isPath)← update(l, ν, σc)
if isPath = tt then
σs ← σs · σ′

c

(l, ν)← post(l, ν, σ′
c)

σc ← ε
end if

end while

44

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Requirements on an Enforcement Mechanism

Functional Definition of an Enforcement Mechanism

Operational Description of an Enforcement Mechanism

Algorithmic Description of an Enforcement Mechanism

A note on Non-enforceable Properties

Extensions

Conclusions and Future Work

45

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Non-enforceable response properties

Σ = {gr , req}.
σ = (3, req) · (4, gr) · (2, req) · (6, gr).

l0 l1

l2

Σ \ {req, gr}

req,
x ≤ 5

gr
req, x < 5

Σ \ {req, gr}

req;
gr, x > 10

gr, x ≤ 10;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 7[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [7, 9[

obs(σ, t) = (3, req) · (4, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr))

Eϕ(σ, t) = obs(ε, t)

t ∈ [9, 15[

obs(σ, t) = (3, req) · (4, gr) · (2, req)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [15,∞]

obs(σ, t) = (3, req) · (4, gr) · (2, req) · (6, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req) · (6, gr))

Eϕ(σ, t) = obs(ε, t)
46

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Non-enforceable response properties

Σ = {gr , req}.
σ = (3, req) · (4, gr) · (2, req) · (6, gr).

l0 l1

l2

Σ \ {req, gr}

req,
x ≤ 5

gr
req, x < 5

Σ \ {req, gr}

req;
gr, x > 10

gr, x ≤ 10;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 7[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [7, 9[

obs(σ, t) = (3, req) · (4, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr))

Eϕ(σ, t) = obs(ε, t)

t ∈ [9, 15[

obs(σ, t) = (3, req) · (4, gr) · (2, req)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [15,∞]

obs(σ, t) = (3, req) · (4, gr) · (2, req) · (6, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req) · (6, gr))

Eϕ(σ, t) = obs(ε, t)
46

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Non-enforceable response properties

Σ = {gr , req}.
σ = (3, req) · (4, gr) · (2, req) · (6, gr).

l0 l1

l2

Σ \ {req, gr}

req,
x ≤ 5

gr
req, x < 5

Σ \ {req, gr}

req;
gr, x > 10

gr, x ≤ 10;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 7[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [7, 9[

obs(σ, t) = (3, req) · (4, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr))

Eϕ(σ, t) = obs(ε, t)

t ∈ [9, 15[

obs(σ, t) = (3, req) · (4, gr) · (2, req)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [15,∞]

obs(σ, t) = (3, req) · (4, gr) · (2, req) · (6, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req) · (6, gr))

Eϕ(σ, t) = obs(ε, t)
46

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Non-enforceable response properties

Σ = {gr , req}.
σ = (3, req) · (4, gr) · (2, req) · (6, gr).

l0 l1

l2

Σ \ {req, gr}

req,
x ≤ 5

gr
req, x < 5

Σ \ {req, gr}

req;
gr, x > 10

gr, x ≤ 10;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 7[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [7, 9[

obs(σ, t) = (3, req) · (4, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr))

Eϕ(σ, t) = obs(ε, t)

t ∈ [9, 15[

obs(σ, t) = (3, req) · (4, gr) · (2, req)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [15,∞]

obs(σ, t) = (3, req) · (4, gr) · (2, req) · (6, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req) · (6, gr))

Eϕ(σ, t) = obs(ε, t)
46

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Non-enforceable response properties

Σ = {gr , req}.
σ = (3, req) · (4, gr) · (2, req) · (6, gr).

l0 l1

l2

Σ \ {req, gr}

req,
x ≤ 5

gr
req, x < 5

Σ \ {req, gr}

req;
gr, x > 10

gr, x ≤ 10;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 7[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [7, 9[

obs(σ, t) = (3, req) · (4, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr))

Eϕ(σ, t) = obs(ε, t)

t ∈ [9, 15[

obs(σ, t) = (3, req) · (4, gr) · (2, req)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [15,∞]

obs(σ, t) = (3, req) · (4, gr) · (2, req) · (6, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req) · (6, gr))

Eϕ(σ, t) = obs(ε, t)
46

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Non-enforceable response properties

Σ = {gr , req}.
σ = (3, req) · (4, gr) · (2, req) · (6, gr).

l0 l1

l2

Σ \ {req, gr}

req,
x ≤ 5

gr
req, x < 5

Σ \ {req, gr}

req;
gr, x > 10

gr, x ≤ 10;
x := 0

Σ

t ∈ [0, 3[

obs(σ, t) = ε

storeϕ(obs(σ, t)) = (ε, ε)

Eϕ(σ, t) = obs(ε, t)

t ∈ [3, 7[

obs(σ, t) = (3, req)

storeϕ(obs(σ, t)) = (ε, (3, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [7, 9[

obs(σ, t) = (3, req) · (4, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr))

Eϕ(σ, t) = obs(ε, t)

t ∈ [9, 15[

obs(σ, t) = (3, req) · (4, gr) · (2, req)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req))

Eϕ(σ, t) = obs(ε, t)

t ∈ [15,∞]

obs(σ, t) = (3, req) · (4, gr) · (2, req) · (6, gr)

storeϕ(obs(σ, t)) = (ε, (3, req) · (4, gr) · (2, req) · (6, gr))

Eϕ(σ, t) = obs(ε, t)
46

Extensions

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Extensions

Considering Uncontrollable Events [ICTAC’15]

Considering Events with Data [WODES’14]

Conclusions and Future Work

47

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Extensions

Considering Uncontrollable Events [ICTAC’15]

Considering Events with Data [WODES’14]

Conclusions and Future Work

48

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Uncontrollable events

Two sets of events : controllable (Σc) and uncontrollable (Σu).

Uncontrollable Events

Uncont. events must be emitted upon reception (i.e., only observable events).

New definitions and challenges

• Delays between stored controllable events have to be recomputed upon

reception of each uncont. event

• Prevent the system of reaching a bad state upon reception of any

sequence of uncont. events → uncont. events must be anticipated

• Enforceability depends on the received uncontrollable events

Contributions

• Redefining soundness, transparency, and optimality.

• Enforcement mechanisms at two levels of abstraction, functional and

operational, for both untimed and timed regular properties

49

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Uncontrollable events

Two sets of events : controllable (Σc) and uncontrollable (Σu).

Uncontrollable Events

Uncont. events must be emitted upon reception (i.e., only observable events).

New definitions and challenges

• Delays between stored controllable events have to be recomputed upon

reception of each uncont. event

• Prevent the system of reaching a bad state upon reception of any

sequence of uncont. events → uncont. events must be anticipated

• Enforceability depends on the received uncontrollable events

Contributions

• Redefining soundness, transparency, and optimality.

• Enforcement mechanisms at two levels of abstraction, functional and

operational, for both untimed and timed regular properties

49

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Uncontrollable events

Two sets of events : controllable (Σc) and uncontrollable (Σu).

Uncontrollable Events

Uncont. events must be emitted upon reception (i.e., only observable events).

New definitions and challenges

• Delays between stored controllable events have to be recomputed upon

reception of each uncont. event

• Prevent the system of reaching a bad state upon reception of any

sequence of uncont. events → uncont. events must be anticipated

• Enforceability depends on the received uncontrollable events

Contributions

• Redefining soundness, transparency, and optimality.

• Enforcement mechanisms at two levels of abstraction, functional and

operational, for both untimed and timed regular properties

49

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Example of Non-Enforceable Property

Example of a simple shared storage device example (without time).
Σu = {Auth, LockOFF, LockON},Σc = {Write}

l0 l1

l3

l2
Auth

Auth

LockOFF

Write
LockON

Auth

LockON

LockOFF

Write

LockON

LockOFF

Write

Σ

• In l0, impossible to ensure correctness of this property

• If Auth is read, then this property becomes enforceable

50

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Property with time: example of execution

Σu = {Auth, LockOFF, LockON},Σc = {Write}

l0 l1

l3

l2
Auth

Auth,

LockOFF x := 0,

Write x ≥ 2

LockON

Auth

LockON

LockOFF

x := 0

Write

LockON

LockOFF

Write

x < 2

Write

Σ
t = 0

(1, auth).(2, on).(5, off)

.(8, off)ε E

ε

(1, auth).(2, on).(4,w).(5, off)

.(6, on).(7,w)ε

51

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Property with time: example of execution

Σu = {Auth, LockOFF, LockON},Σc = {Write}

l0 l1

l3

l2
Auth

Auth,

LockOFF x := 0,

Write x ≥ 2

LockON

Auth

LockON

LockOFF

x := 0

Write

LockON

LockOFF

Write

x < 2

Write

Σ
t = 1

(1, auth).(2, on).(5, off)

.(8, off) E

ε

(1, auth).(2, on).(4,w).(5, off)

.(6, on).(7,w)

51

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Property with time: example of execution

Σu = {Auth, LockOFF, LockON},Σc = {Write}

l0 l1

l3

l2
Auth

Auth,

LockOFF x := 0,

Write x ≥ 2

LockON

Auth

LockON

LockOFF

x := 0

Write

LockON

LockOFF

Write

x < 2

Write

Σ
t = 2

(1, auth).(2, on).(5, off)

.(8, off) E

ε

(1, auth).(2, on).(4,w).(5, off)

.(6, on).(7,w)

51

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Property with time: example of execution

Σu = {Auth, LockOFF, LockON},Σc = {Write}

l0 l1

l3

l2
Auth

Auth,

LockOFF x := 0,

Write x ≥ 2

LockON

Auth

LockON

LockOFF

x := 0

Write

LockON

LockOFF

Write

x < 2

Write

Σ
t = 4

(1, auth).(2, on).(5, off)

.(8, off) E

w

(1, auth).(2, on).(4,w).(5, off)

.(6, on).(7,w)

51

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Property with time: example of execution

Σu = {Auth, LockOFF, LockON},Σc = {Write}

l0 l1

l3

l2
Auth

Auth,

LockOFF x := 0,

Write x ≥ 2

LockON

Auth

LockON

LockOFF

x := 0

Write

LockON

LockOFF

Write

x < 2

Write

Σ
t = 5

(1, auth).(2, on).(5, off).(7,w)

.(8, off) E

ε

(1, auth).(2, on).(4,w).(5, off)

.(6, on).(7,w)

51

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Property with time: example of execution

Σu = {Auth, LockOFF, LockON},Σc = {Write}

l0 l1

l3

l2
Auth

Auth,

LockOFF x := 0,

Write x ≥ 2

LockON

Auth

LockON

LockOFF

x := 0

Write

LockON

LockOFF

Write

x < 2

Write

Σ
t = 6

(1, auth).(2, on).(5, off).(6, on)

.(8, off) E

w

(1, auth).(2, on).(4,w).(5, off)

.(6, on).(7,w)

51

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Property with time: example of execution

Σu = {Auth, LockOFF, LockON},Σc = {Write}

l0 l1

l3

l2
Auth

Auth,

LockOFF x := 0,

Write x ≥ 2

LockON

Auth

LockON

LockOFF

x := 0

Write

LockON

LockOFF

Write

x < 2

Write

Σ
t = 7

(1, auth).(2, on).(5, off).(6, on)

.(8, off) E

w .w

(1, auth).(2, on).(4,w).(5, off)

.(6, on).(7,w)

51

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Property with time: example of execution

Σu = {Auth, LockOFF, LockON},Σc = {Write}

l0 l1

l3

l2
Auth

Auth,

LockOFF x := 0,

Write x ≥ 2

LockON

Auth

LockON

LockOFF

x := 0

Write

LockON

LockOFF

Write

x < 2

Write

Σ
t = 8

(1, auth).(2, on).(5, off).(6, on)

.(8, off).(10,w).(10,w) E

(1, auth).(2, on).(4,w).(5, off)

.(6, on).(7,w).(8, off)

51

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Property with time: example of execution

Σu = {Auth, LockOFF, LockON},Σc = {Write}

l0 l1

l3

l2
Auth

Auth,

LockOFF x := 0,

Write x ≥ 2

LockON

Auth

LockON

LockOFF

x := 0

Write

LockON

LockOFF

Write

x < 2

Write

Σ
t = 10

(1, auth).(2, on).(5, off).(6, on)

.(8, off).(10,w).(10,w) E

(1, auth).(2, on).(4,w).(5, off)

.(6, on).(7,w).(8, off)

51

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Extensions

Considering Uncontrollable Events [ICTAC’15]

Considering Events with Data [WODES’14]

Conclusions and Future Work

52

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Motivations for enforcement with time and data

Allow specifying desired behavior of a system more precisely (time constraints

between events, allowing events to carry data, expressing constraints).

Specifying constraints over time and data

• For each client with special id, after a request, there should be a response

after a delay of 5 t.u., if there are more than 10 request messages..

• For each client with normal id, after a request, there should be a response

after a delay of X t.u., where X is the number of request messages..

Many application domains

• Communication protocols.

• Managing resource allocation.

• Real-time embedded systems.

• Monitor hardware failures.

• Web services.

• Several other domains.

Enforcement Monitors

• Firewall (to prevent DOS attacks). • Scheduler for resource allocation.

53

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Motivations for enforcement with time and data

Allow specifying desired behavior of a system more precisely (time constraints

between events, allowing events to carry data, expressing constraints).

Specifying constraints over time and data

• For each client with special id, after a request, there should be a response

after a delay of 5 t.u., if there are more than 10 request messages..

• For each client with normal id, after a request, there should be a response

after a delay of X t.u., where X is the number of request messages..

Many application domains

• Communication protocols.

• Managing resource allocation.

• Real-time embedded systems.

• Monitor hardware failures.

• Web services.

• Several other domains.

Enforcement Monitors

• Firewall (to prevent DOS attacks). • Scheduler for resource allocation.

53

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Extensions

Considering Uncontrollable Events [ICTAC’15]

Considering Events with Data [WODES’14]

Parameterized Timed Automata with Variables (PTAVs)

Runtime Enforcement of PTAVs

Application Domains

Conclusions and Future Work

54

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parameterized Timed Automata with Variables (PTAVs)

• Extension of timed automata.

• Describes a set of identical timed automata (differing only in the value of

its parameter p) extended with internal and external variables.

• (Inspired from IOSTS, TIOSTS, QEA, Parametric trace slicing.)

Syntax of PTAV

A(p) = 〈p,V ,C ,Θ, L, l0, LG ,X ,Σp,∆〉.

• p - a parameter (for example to handle multiple clients/instances).

• C - external variables (to model transfer of data from the monitored

system along with events).

• V - internal variables (used for internal computation).

A PTAV with parameter p is denoted as A(p), and an instance of A(p) for a

value π of p is denoted as A(π).

55

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parameterized Timed Automata with Variables (PTAVs)

• Extension of timed automata.

• Describes a set of identical timed automata (differing only in the value of

its parameter p) extended with internal and external variables.

• (Inspired from IOSTS, TIOSTS, QEA, Parametric trace slicing.)

Syntax of PTAV

A(p) = 〈p,V ,C ,Θ, L, l0, LG ,X ,Σp,∆〉.

• p - a parameter (for example to handle multiple clients/instances).

• C - external variables (to model transfer of data from the monitored

system along with events).

• V - internal variables (used for internal computation).

A PTAV with parameter p is denoted as A(p), and an instance of A(p) for a

value π of p is denoted as A(π).

55

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parameterized Timed Automata with Variables (PTAV)

Events, timed words

• Event: ei = (δi , ai (πi , ηi)), ai ∈ Σ, πi ∈ Dp, ηi ∈ DV .

• Timed word: σ = (δ1, a1(π1, η1)) · · · (δn, an(πn, ηn)).

• Instance of PTAV A(π) accepts σ if σ ∈ L(A(π)).

Projections of σ according to the runtime values of π

• σ = (0.5, a(1, η1)) · (0.3, a(2, η2)) · (0.2, a(1, η3)) · (0.4, a(2, η4))

• σ ↓1= (0.5, a(1, η1)) · (0.5, a(1, η3))

• σ ↓2= (0.8, a(2, η2)) · (0.6, a(2, η4))

56

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parameterized Timed Automata with Variables (PTAV)

Events, timed words

• Event: ei = (δi , ai (πi , ηi)), ai ∈ Σ, πi ∈ Dp, ηi ∈ DV .

• Timed word: σ = (δ1, a1(π1, η1)) · · · (δn, an(πn, ηn)).

• Instance of PTAV A(π) accepts σ if σ ∈ L(A(π)).

Projections of σ according to the runtime values of π

• σ = (0.5, a(1, η1)) · (0.3, a(2, η2)) · (0.2, a(1, η3)) · (0.4, a(2, η4))

• σ ↓1= (0.5, a(1, η1)) · (0.5, a(1, η3))

• σ ↓2= (0.8, a(2, η2)) · (0.6, a(2, η4))

56

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parameterized Timed Automata with Variables (PTAV)

Events, timed words

• Event: ei = (δi , ai (πi , ηi)), ai ∈ Σ, πi ∈ Dp, ηi ∈ DV .

• Timed word: σ = (δ1, a1(π1, η1)) · · · (δn, an(πn, ηn)).

• Instance of PTAV A(π) accepts σ if σ ∈ L(A(π)).

Projections of σ according to the runtime values of π

• σ = (0.5, a(1, η1)) · (0.3, a(2, η2)) · (0.2, a(1, η3)) · (0.4, a(2, η4))

• σ ↓1= (0.5, a(1, η1)) · (0.5, a(1, η3))

• σ ↓2= (0.8, a(2, η2)) · (0.6, a(2, η4))

56

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parameterized Timed Automata with Variables (PTAV)

Events, timed words

• Event: ei = (δi , ai (πi , ηi)), ai ∈ Σ, πi ∈ Dp, ηi ∈ DV .

• Timed word: σ = (δ1, a1(π1, η1)) · · · (δn, an(πn, ηn)).

• Instance of PTAV A(π) accepts σ if σ ∈ L(A(π)).

Projections of σ according to the runtime values of π

• σ = (0.5, a(1, η1)) · (0.3, a(2, η2)) · (0.2, a(1, η3)) · (0.4, a(2, η4))

• σ ↓1= (0.5, a(1, η1)) · (0.5, a(1, η3))

• σ ↓2= (0.8, a(2, η2)) · (0.6, a(2, η4))

56

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parameterized Timed Automata with Variables (PTAV)

Events, timed words

• Event: ei = (δi , ai (πi , ηi)), ai ∈ Σ, πi ∈ Dp, ηi ∈ DV .

• Timed word: σ = (δ1, a1(π1, η1)) · · · (δn, an(πn, ηn)).

• Instance of PTAV A(π) accepts σ if σ ∈ L(A(π)).

Projections of σ according to the runtime values of π

• σ = (0.5, a(1, η1)) · (0.3, a(2, η2)) · (0.2, a(1, η3)) · (0.4, a(2, η4))

• σ ↓1= (0.5, a(1, η1)) · (0.5, a(1, η3))

• σ ↓2= (0.8, a(2, η2)) · (0.6, a(2, η4))

56

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parameterized Timed Automata with Variables (PTAV)

Events, timed words

• Event: ei = (δi , ai (πi , ηi)), ai ∈ Σ, πi ∈ Dp, ηi ∈ DV .

• Timed word: σ = (δ1, a1(π1, η1)) · · · (δn, an(πn, ηn)).

• Instance of PTAV A(π) accepts σ if σ ∈ L(A(π)).

Projections of σ according to the runtime values of π

• σ = (0.5, a(1, η1)) · (0.3, a(2, η2)) · (0.2, a(1, η3)) · (0.4, a(2, η4))

• σ ↓1= (0.5, a(1, η1)) · (0.5, a(1, η3))

• σ ↓2= (0.8, a(2, η2)) · (0.6, a(2, η4))

56

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Examples of PTAVs for resource allocation 2

l0 l1

ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
counter := 1, x := 0, y := 0 ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
x < reset ∧ y ≥ delay ,
counter + +, y := 0

R1 .alloc(sId),
x ≥ reset ,

counter := 1, x := 0, y := 0

“There should be a dynamic delay between two allocation requests to the

same resource by a service. This delay increases as the number of allocations

increases and also depends on the service id.”

2Squares denote accepting locations. Non-accepting locations are omitted

57

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Examples of PTAVs for resource allocation (ctd) 3

l0 l1l2

ΣP3

id \ {rcpt to(id)} rcpt to(id),
counter < max req ,

counter + +

rcpt to(id),
counter ≥ max req ,
counter + +, x := 0

ΣP3

id \ {rcpt to(id)}ok 250 (id), error 550 (id)
x ≥ 5 x ≥ 10

If

• the number of RCPT TO messages is greater than maxreq, and

• the response of the server is OK 250 (resp. ERROR 550),

then there should be a delay of at least 5 (resp. 10) t.u. before sending the

response.
3Squares denote accepting locations. Non-accepting locations are omitted

58

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Extensions

Considering Uncontrollable Events [ICTAC’15]

Considering Events with Data [WODES’14]

Parameterized Timed Automata with Variables (PTAVs)

Runtime Enforcement of PTAVs

Application Domains

Conclusions and Future Work

59

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement of parametric timed properties

ϕA(p)

o |= ϕA(p) σ

Enforcement Mechanism

EϕA(1)

. . .

. . .

σ ↓1

EϕA(2)

σ ↓2
o2 4d σ↓2,
o2 |= ϕA(2)

o1 4d σ↓1,
o1 |= ϕA(1)

• Input/output timed words: σ = (δ1, a1(π, η1)) · · · (δn, an(π, ηn)).

• Property ϕ specified by a PTAV.

• An instance of EM per parameter value (takes as input only the events

with same parameter value).

• Output of each EM instance satisfies the soundness, transparency and

optimality constraints.

• o = merge(o1, o2) is only sound (order of events may not be preserved

globally).

60

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement of parametric timed properties

ϕA(p)

o |= ϕA(p) σ

Enforcement Mechanism

EϕA(1)

. . .

. . .

σ ↓1

EϕA(2)

σ ↓2
o2 4d σ↓2,
o2 |= ϕA(2)

o1 4d σ↓1,
o1 |= ϕA(1)

• Input/output timed words: σ = (δ1, a1(π, η1)) · · · (δn, an(π, ηn)).

• Property ϕ specified by a PTAV.

• An instance of EM per parameter value (takes as input only the events

with same parameter value).

• Output of each EM instance satisfies the soundness, transparency and

optimality constraints.

• o = merge(o1, o2) is only sound (order of events may not be preserved

globally).

60

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement of parametric timed properties

ϕA(p)

o |= ϕA(p) σ

Enforcement Mechanism

EϕA(1)

. . .

. . .

σ ↓1

EϕA(2)

σ ↓2
o2 4d σ↓2,
o2 |= ϕA(2)

o1 4d σ↓1,
o1 |= ϕA(1)

• Input/output timed words: σ = (δ1, a1(π, η1)) · · · (δn, an(π, ηn)).

• Property ϕ specified by a PTAV.

• An instance of EM per parameter value (takes as input only the events

with same parameter value).

• Output of each EM instance satisfies the soundness, transparency and

optimality constraints.

• o = merge(o1, o2) is only sound (order of events may not be preserved

globally).

60

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement of parametric timed properties

ϕA(p)

o |= ϕA(p) σ

Enforcement Mechanism

EϕA(1)

. . .

. . .

σ ↓1

EϕA(2)

σ ↓2
o2 4d σ↓2,
o2 |= ϕA(2)

o1 4d σ↓1,
o1 |= ϕA(1)

• Input/output timed words: σ = (δ1, a1(π, η1)) · · · (δn, an(π, ηn)).

• Property ϕ specified by a PTAV.

• An instance of EM per parameter value (takes as input only the events

with same parameter value).

• Output of each EM instance satisfies the soundness, transparency and

optimality constraints.

• o = merge(o1, o2) is only sound (order of events may not be preserved

globally).

60

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Enforcement of parametric timed properties

ϕA(p)

o |= ϕA(p) σ

Enforcement Mechanism

EϕA(1)

. . .

. . .

σ ↓1

EϕA(2)

σ ↓2
o2 4d σ↓2,
o2 |= ϕA(2)

o1 4d σ↓1,
o1 |= ϕA(1)

• Input/output timed words: σ = (δ1, a1(π, η1)) · · · (δn, an(π, ηn)).

• Property ϕ specified by a PTAV.

• An instance of EM per parameter value (takes as input only the events

with same parameter value).

• Output of each EM instance satisfies the soundness, transparency and

optimality constraints.

• o = merge(o1, o2) is only sound (order of events may not be preserved

globally).

60

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Requirements: Enforcement of parametric timed properties

Eϕp(σ, t) : (R≥0 × Λ)∗ × R≥0 → (R≥0 × Λ)∗

ϕA(p)

EϕA(p)
(σ, t) σ

Parametric Enforcement

EϕA(1)

. . .

. . .

σ ↓1

EϕA(2)

σ ↓2
EϕA(2)

(σ↓2, t)

EϕA(1)
(σ↓1, t)

Parametric Soundness, Transparency and Optimality

• Soundness: ∀π ∈ Dom(p), ∀σ ∈ (R≥0 × Λ)∗ : sound(EϕA(π)
, σ↓π)

• Transparency: ∀π ∈ Dom(p), ∀σ ∈ (R≥0 × Λ)∗ : transparent(EϕA(π)
, σ↓π)

• Optimality: ∀π ∈ Dom(p), ∀σ ∈ (R≥0 × Λ)∗ : optimal(EϕA(π)
, σ↓π)

Proposition

Given a safety PTAV A(p) specifying property ϕA(p), for all π ∈ Dp , the enforcement

function EϕA(π)
, is sound, transparent, and optimal w.r.t. A(π).

61

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parametric case: Example

l0 l1

ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
counter := 1, x := 0, y := 0 ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
x < reset ∧ y ≥ delay ,
counter + +, y := 0

R1 .alloc(sId),
x ≥ reset ,

counter := 1, x := 0, y := 0
• delay = 5

• reset = 100

• Let σ = (2,R1 .alloc(1)) · (1,R1 .alloc(2)) · (1,R1 .alloc(1)).

• Dom(σ) = {1, 2}, we have two monitor instances.

Π = 1

• σ ↓1= (2,R1 .alloc(1)) · (2,R1 .alloc(1)).

• EϕA(1)
=

(2,R1 .alloc(1)) · (5,R1 .alloc(1)).

Π = 2

• σ ↓2= (3,R1 .alloc(2)).

• EϕA(2)
= (3,R1 .alloc(2)).

EϕA(1)
and EϕA(2)

are sound, transparent, and optimal.

Remark: properties of the global output trace

• EϕA(p)
(σ, t) = merge(EϕA(1)

(σ↓1, t),EϕA(2)
(σ↓2, t))

• Only soundness is preserved.
62

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parametric case: Example

l0 l1

ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
counter := 1, x := 0, y := 0 ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
x < reset ∧ y ≥ delay ,
counter + +, y := 0

R1 .alloc(sId),
x ≥ reset ,

counter := 1, x := 0, y := 0
• delay = 5

• reset = 100

• Let σ = (2,R1 .alloc(1)) · (1,R1 .alloc(2)) · (1,R1 .alloc(1)).

• Dom(σ) = {1, 2}, we have two monitor instances.

Π = 1

• σ ↓1= (2,R1 .alloc(1)) · (2,R1 .alloc(1)).

• EϕA(1)
=

(2,R1 .alloc(1)) · (5,R1 .alloc(1)).

Π = 2

• σ ↓2= (3,R1 .alloc(2)).

• EϕA(2)
= (3,R1 .alloc(2)).

EϕA(1)
and EϕA(2)

are sound, transparent, and optimal.

Remark: properties of the global output trace

• EϕA(p)
(σ, t) = merge(EϕA(1)

(σ↓1, t),EϕA(2)
(σ↓2, t))

• Only soundness is preserved.
62

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parametric case: Example

l0 l1

ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
counter := 1, x := 0, y := 0 ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
x < reset ∧ y ≥ delay ,
counter + +, y := 0

R1 .alloc(sId),
x ≥ reset ,

counter := 1, x := 0, y := 0
• delay = 5

• reset = 100

• Let σ = (2,R1 .alloc(1)) · (1,R1 .alloc(2)) · (1,R1 .alloc(1)).

• Dom(σ) = {1, 2}, we have two monitor instances.

Π = 1

• σ ↓1= (2,R1 .alloc(1)) · (2,R1 .alloc(1)).

• EϕA(1)
=

(2,R1 .alloc(1)) · (5,R1 .alloc(1)).

Π = 2

• σ ↓2= (3,R1 .alloc(2)).

• EϕA(2)
= (3,R1 .alloc(2)).

EϕA(1)
and EϕA(2)

are sound, transparent, and optimal.

Remark: properties of the global output trace

• EϕA(p)
(σ, t) = merge(EϕA(1)

(σ↓1, t),EϕA(2)
(σ↓2, t))

• Only soundness is preserved.
62

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parametric case: Example

l0 l1

ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
counter := 1, x := 0, y := 0 ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
x < reset ∧ y ≥ delay ,
counter + +, y := 0

R1 .alloc(sId),
x ≥ reset ,

counter := 1, x := 0, y := 0
• delay = 5

• reset = 100

• Let σ = (2,R1 .alloc(1)) · (1,R1 .alloc(2)) · (1,R1 .alloc(1)).

• Dom(σ) = {1, 2}, we have two monitor instances.

Π = 1

• σ ↓1= (2,R1 .alloc(1)) · (2,R1 .alloc(1)).

• EϕA(1)
=

(2,R1 .alloc(1)) · (5,R1 .alloc(1)).

Π = 2

• σ ↓2= (3,R1 .alloc(2)).

• EϕA(2)
= (3,R1 .alloc(2)).

EϕA(1)
and EϕA(2)

are sound, transparent, and optimal.

Remark: properties of the global output trace

• EϕA(p)
(σ, t) = merge(EϕA(1)

(σ↓1, t),EϕA(2)
(σ↓2, t))

• Only soundness is preserved.
62

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Parametric case: Example

l0 l1

ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
counter := 1, x := 0, y := 0 ΣP1

sId \ {R1 .alloc(sId)}

R1 .alloc(sId),
x < reset ∧ y ≥ delay ,
counter + +, y := 0

R1 .alloc(sId),
x ≥ reset ,

counter := 1, x := 0, y := 0
• delay = 5

• reset = 100

• Let σ = (2,R1 .alloc(1)) · (1,R1 .alloc(2)) · (1,R1 .alloc(1)).

• Dom(σ) = {1, 2}, we have two monitor instances.

Π = 1

• σ ↓1= (2,R1 .alloc(1)) · (2,R1 .alloc(1)).

• EϕA(1)
=

(2,R1 .alloc(1)) · (5,R1 .alloc(1)).

Π = 2

• σ ↓2= (3,R1 .alloc(2)).

• EϕA(2)
= (3,R1 .alloc(2)).

EϕA(1)
and EϕA(2)

are sound, transparent, and optimal.

Remark: properties of the global output trace

• EϕA(p)
(σ, t) = merge(EϕA(1)

(σ↓1, t),EϕA(2)
(σ↓2, t))

• Only soundness is preserved.
62

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Outline - On the Runtime Enforcement of Timed Properties

On the Runtime Enforcement of Untimed Properties

Specifying Timed Properties

Runtime Enforcement of Timed Properties

Extensions

Considering Uncontrollable Events [ICTAC’15]

Considering Events with Data [WODES’14]

Parameterized Timed Automata with Variables (PTAVs)

Runtime Enforcement of PTAVs

Application Domains

Conclusions and Future Work

63

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Application Domains

Resource allocation in a client-server model

C1

C2

C3

S1

S2

R1

R2

R3

Clients Services Resources

l0 l1

ΣP2

sId \ {R1 .rel(sId)}

R1 .rel(sId),
x := 0

ΣP2

sId \ {R1 .alloc(sId),R2 .alloc(sId)}

R2 .alloc(sId),
x ≥ 2

R1 .alloc(sId)

After releasing R1, there should be a delay of

at least 2 t.u. before allocating R2.

Protecting mail servers

If the number of RCPT TO

messages from a client is

greater than maxreq, then

there should be a delay of

at least del t.u. before re-

sponding an OK 250.

l0 l1l2

l3

ΣP4

id \ {rcpt to(id)},
setMR(id ,max req)

rcpt to(id),
y < minD ∧ counter < max req ,

counter + +

rcpt to(id),
y < minD ∧ counter ≥ max req ,

counter + +, x := 0

rcpt to(id),
y ≥ minD ,
counter := 0

ok 250 (id),
y := 0 setMR(id ,max req)

ok 250 (id),
x ≥ del ,
y := 0

setMR(id ,max req)

ok 250 (id),
y := 0

setMR(id ,max req)

64

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Application Domains

Resource allocation in a client-server model

C1

C2

C3

S1

S2

R1

R2

R3

Clients Services Resources

l0 l1

ΣP2

sId \ {R1 .rel(sId)}

R1 .rel(sId),
x := 0

ΣP2

sId \ {R1 .alloc(sId),R2 .alloc(sId)}

R2 .alloc(sId),
x ≥ 2

R1 .alloc(sId)

After releasing R1, there should be a delay of

at least 2 t.u. before allocating R2.

Protecting mail servers

If the number of RCPT TO

messages from a client is

greater than maxreq, then

there should be a delay of

at least del t.u. before re-

sponding an OK 250.

l0 l1l2

l3

ΣP4

id \ {rcpt to(id)},
setMR(id ,max req)

rcpt to(id),
y < minD ∧ counter < max req ,

counter + +

rcpt to(id),
y < minD ∧ counter ≥ max req ,

counter + +, x := 0

rcpt to(id),
y ≥ minD ,
counter := 0

ok 250 (id),
y := 0 setMR(id ,max req)

ok 250 (id),
x ≥ del ,
y := 0

setMR(id ,max req)

ok 250 (id),
y := 0

setMR(id ,max req)

64

Conclusions and Future Work

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Conclusions and Future Work

Enforcement monitoring for systems with timing requirements.

• Input any regular timed property modeled as a timed automaton.

• Enforcement mechanisms described at several levels of abstraction

(enforcement function, enforcement monitor and algorithms).

• Enforcement Mechanisms are delayers

(with several alternative enforcement primitives: suppress actions,

augment/reduce delays).

• Exhibiting a notion of non-enforceable properties.

• Requirements with constraints on data and time.

Future Work

• Delineate the set of enforceable response properties.

• More expressive formalisms such as context-free timed languages.

• Probabilistic models for events.

• Implementing efficient enforcement monitors (in application scenarios).
65

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Conclusions and Future Work

Enforcement monitoring for systems with timing requirements.

• Input any regular timed property modeled as a timed automaton.

• Enforcement mechanisms described at several levels of abstraction

(enforcement function, enforcement monitor and algorithms).

• Enforcement Mechanisms are delayers

(with several alternative enforcement primitives: suppress actions,

augment/reduce delays).

• Exhibiting a notion of non-enforceable properties.

• Requirements with constraints on data and time.

Future Work

• Delineate the set of enforceable response properties.

• More expressive formalisms such as context-free timed languages.

• Probabilistic models for events.

• Implementing efficient enforcement monitors (in application scenarios).
65

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

Software Verification and Testing at SAC 2018

Consider submitting to the Software Verification and Testing at SAC 2018!

April 9 – 13, 2018 in Pau, France

http://sac-svt-2018.imag.fr

Important Dates:

• Sept 15, 2017: Submission of regular papers and SRC research abstracts

• Nov 10, 2017: Notification of paper and SRC acceptance/rejection

• April 9 – 13, 2018: SAC and SVT day

66

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References on Runtime Enforcement (of Timed) Properties

• First definition of mechanisms for safety and co-safety properties:

[PinisettyFJMRN12].

• Extension to regular properties: [PinisettyFJM14a].

• Enforcement mechanism as delayers (preserving delay between events):

[PinisettyFJMRN14] (summarizing [PinisettyFJMRN12, PinisettyFJM14a])

• Events with Data: [PinisettyFJM14b].

• Uncontrollable events: [RenardFRPJM15].

• Enforcement mechanism as delayers+suppression (reducing delay between

events): [FalconeJMP16].

• Using Game Theory to synthesize mechanisms

67

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References on Runtime Enforcement (of Untimed Properties)

General Models of Enforcement Mechanisms:

• Security Automata (SAs): [Schneider00].

• Edit Automata (EAs): [LigattiBW05, LigattiBW09, LigattiThesis].

• Generic Enforcement Monitors (GEMs): [FalconeMFR11].

Models taking memory limitations into account:

• Shallow History Automata: [Fong04].

• Finite Edit Automata: [BeauquierCL09].

• Limiting the amount of Memory: [TalhiTD06].

Synthesis of Enforcement Mechanisms:

• Synthesis from Process Algebraic Descriptions: [MartinelliM07].

• Synthesizing GEMs from Streett Automata: [FalconeFM08].

• Synthesizing SAs from Rabin Automata: [ChabotKT09].

• Synthesizing GEMs from Safety-Progress Properties: [FalconeFM12].

Enforceable properties:

[Schneider00, HamelnMS06, LigattiThesis, BielovaM08, FalconeFM12].
68

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References on Runtime Verification

Tutorials and surveys:

• [PlatnerN81]

• [SchroederB95]

• [ColinM05]

• [HavelundG08]

• [LeuckerS08]

• [FalconeHR13]

69

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References i

Danièle Beauquier, Joëlle Cohen, and Ruggero Lanotte.

Security policies enforcement using finite edit automata.

Electr. Notes Theor. Comput. Sci., 229(3):19–35, 2009.

Nataliia Bielova and Fabio Massacci.

Do you really mean what you actually enforced?

In FAST’08: 5th International Workshop on Formal Aspects in Security

and Trust. Revised Selected Papers, pages 287–301, 2008.

Hugues Chabot, Raphael Khoury, and Nadia Tawbi.

Generating in-line monitors for Rabin automata.

In NordSec’09: 14th Nordic Conf. on Secure IT Systems, pages 287–301,

2009.

70

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References ii

Severine Colin and Leonardo Mariani.

Run-time verification.

In Model-based Testing of Reactive Systems, volume 3472 of LNCS, pages

525–556, 2005.

Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier.

Synthesizing enforcement monitors wrt. the safety-progress

classification of properties.

In ICISS’08: Proceedings of the 4th International Conference on

Information Systems Security, pages 41–55, 2008.

Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier.

Enforcement monitoring wrt. the safety-progress classification of

properties.

In SAC ’09: Proceedings of the ACM symposium on Applied Computing,

pages 593–600, 2009.

71

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References iii

Yliès Falcone, Jean-Claude Fernandez, and Laurent Mounier.

What can you verify and enforce at runtime?

STTT, 14(3):349–382, 2012.

Yliès Falcone, Klaus Havelund, and Giles Reger.

A tutorial on runtime verification.

In Manfred Broy, Doron A. Peled, and Georg Kalus, editors, Engineering

Dependable Software Systems, volume 34 of NATO Science for Peace and

Security Series, D: Information and Communication Security, pages

141–175. IOS Press, 2013.

Yliès Falcone, Thierry Jéron, Hervé Marchand, and Srinivas Pinisetty.

Runtime enforcement of regular timed properties by suppressing and

delaying events.

Science of Computer Programming, 123(3):2–41, 2016.

72

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References iv

Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc

Richier.

Runtime enforcement monitors: composition, synthesis, and

enforcement abilities.

Formal Methods in System Design, 38(3):223–262, 2011.

Philip W. L. Fong.

Access control by tracking shallow execution history.

In Proceedings of the 2004 IEEE Symposium on Security and Privacy,

pages 43–55, 2004.

Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider.

Computability classes for enforcement mechanisms.

ACM Trans. Programming Lang. and Syst., 28(1):175–205, 2006.

73

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References v

Klaus Havelund and Allen Goldberg.

Verify your runs.

Verified Software: Theories, Tools, Experiments: First IFIP TC 2/WG 2.3

Conference, VSTTE 2005. Revised Selected Papers and Discussions, pages

374–383, 2008.

Martin Leucker and Christian Schallhart.

A brief account of runtime verification.

Journal of Logic and Algebraic Programming, 78(5):293–303, may/june

2008.

Jay Ligatti, Lujo Bauer, and David Walker.

Enforcing non-safety security policies with program monitors.

In ESORICS’05 Proceedings of the 10th European Symposium on Research

in Computer Security, pages 355–373, 2005.

74

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References vi

Jay Ligatti, Lujo Bauer, and David Walker.

Run-time enforcement of nonsafety policies.

ACM Transaction Information System Security., 12(3), 2009.

Jarred Adam Ligatti.

Policy Enforcement via Program Monitoring.

PhD thesis, Princeton University, June 2006.

Fabio Martinelli and Ilaria Matteucci.

Through modeling to synthesis of security automata.

Electronic Notes in Theoritical Compututer Science, 179:31–46, 2007.

Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, and Hervé Marchand.

Runtime enforcement of regular timed properties.

In Yookun Cho, Sung Y. Shin, Sang-Wook Kim, Chih-Cheng Hung, and

Jiman Hong, editors, Symposium on Applied Computing, SAC 2014,

Gyeongju, Republic of Korea - March 24 - 28, 2014, pages 1279–1286.

ACM, 2014.

75

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References vii

Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, and Hervé Marchand.

Runtime enforcement of parametric timed properties with practical

applications.

In Jean-Jacques Lesage, Jean-Marc Faure, José E. R. Cury, and Bengt

Lennartson, editors, 12th International Workshop on Discrete Event

Systems, WODES 2014, Cachan, France, May 14-16, 2014., pages

420–427. International Federation of Automatic Control, 2014.

Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand, Antoine

Rollet, and Omer Landry Nguena-Timo.

Runtime enforcement of timed properties.

In Runtime Verification, Third International Conference, RV 2012,

Istanbul, Turkey, September 25-28, 2012, Revised Selected Papers, pages

229–244, 2012.

76

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References viii

Srinivas Pinisetty, Yliès Falcone, Thierry Jéron, Hervé Marchand, Antoine

Rollet, and Omer Nguena-Timo.

Runtime enforcement of timed properties revisited.

Formal Methods in System Design, 45(3):381–422, 2014.

B. Plattner and J. Nievergelt.

Special feature: Monitoring program execution: A survey.

Computer, 14(11):76–93, 1981.

Matthieu Renard, Yliès Falcone, Antoine Rollet, Srinivas Pinisetty, Thierry

Jéron, and Hervé Marchand.

Enforcement of (timed) properties with uncontrollable events.

In Martin Leucker, Camilo Rueda, and Frank D. Valencia, editors,

Theoretical Aspects of Computing - ICTAC 2015 - 12th International

Colloquium Cali, Colombia, October 29-31, 2015, Proceedings, volume

9399 of Lecture Notes in Computer Science, pages 542–560. Springer,

2015.

77

RE of Untimed Properties Specifying Timed Properties RE of Timed Properties Extensions Conclusions and Future Work

References ix

Fred B. Schneider.

Enforceable security policies.

ACM Transactions on Information and System Security, 3(1), 2000.

Beth A. Schroeder.

On-line monitoring: A tutorial.

Computer, 28(6):72–78, 1995.

Chamseddine Talhi, Nadia Tawbi, and Mourad Debbabi.

Execution monitoring enforcement for limited-memory systems.

In PST’06: Proceedings of the International Conference on Privacy,

Security and Trust, pages 1–12, 2006.

78

	On the Runtime Enforcement of Untimed Properties
	Specifying Timed Properties
	Runtime Enforcement of Timed Properties
	Requirements on an Enforcement Mechanism
	Functional Definition of an Enforcement Mechanism
	Operational Description of an Enforcement Mechanism
	Algorithmic Description of an Enforcement Mechanism
	A note on Non-enforceable Properties

	Extensions
	Considering Uncontrollable Events [ICTAC'15]
	Considering Events with Data [WODES'14]

	Conclusions and Future Work

