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MPPA® Manycore Processors

= DSP type of processing = MPPA®-256 processors
= Energy efficiency = 32 management cores on chip
=  Timing predictability = 256 application cores on chip
= Software programmability » High-performance /O

= CPU ease of programming = Scalable parallel computing
= C/C++GNU environment = MPPA® processors can be tiled

together through NoC

* Run-time support for pooling the
external DDR memory resources

= 32-bit/64-bit addresses, little-endian

= Rich operating systems (Linux with
dynamic loading & linking)

Altera

Courtes
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MPPA® Processor Family and Roadmap

Production 2015 2017 2018

MPPA® 1.0 MPPA® 2.0 | MPPA® 2.5 | MPPA® 3.0

ANDEY BOSTAN 288 BOSTAN-S 288 COOLIDGE 80 /COOLIDGE160

Prototype Higher speed & performance Optimized for Computer Vision and Deep Learning
Adding new features : Ethernet
dispatcher, Crypto co-processor

Fixed-point operations 600 GOPS 1TOPS 6 TOPS 9..2 TOPS
Floating-point operations 600 GFLOPS 1 TFLOPS 3.0 TFLOPS 4.6 TFLOPS
Typical Power 10-15W 10-20W 6-20W 10W - 40W
Specifications e 288 VLIW Cores * 288 Kalray VLIW Cores * 80 Kalray 64-bit VLIW * 160 Kalray 64-bit VLIW

* 32 bits » 128 Crypto Coporcessors Cores Cores

» 2xDDR3 * 2xDDR3 * 80 Coprocessor for vision * 160 Coprocessor for

* 2X40 GbE *+ 8x1/10G GbE and learning vision and learning

e 2xPCle 8 lane Gen3 » 2xPCle 8 lane Gen3 * 2xLP/DDR4 * 2xLP/DDR4

* 8x 1/10/25GbE * 8x 1/10/25GbE

16-lane PCle Gen4
4x CAN-FD Controller

16-lane PCle Gen4
4x CAN-FD Controller
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= 16 compute clusters

= 2 1/O clusters each with quad-core CPUs,
DDR3, 4 Ethernet 10G and 8 PCle Gen3

= Data and control networks-on-chip
= Distributed memory architecture
= 634 GFLOPS SP for 25W @ 600Mhz

= 16 user cores + 1 system core

= NoC Tx and Rx interfaces

= Debug & Support Unit (DSU)

= 2 MB multi-banked shared memory
= 77GB/s Shared Memory BW

=16 cores SMP System

= 32-bit or 64-bit addresses

= 5-issue VLIW architecture

= MMU + I&D cache (8KB+8KB)

= 32-bit/64-bit IEEE 754-2008 FMA FPU
= Tightly coupled crypto co-processor
= 2.4 GFLOPS SP per core @600Mhz
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From Multicore to MPPA® Manycore Processor

_ = Manycore consolidates embedded multicores

=  Multicore units with local memory connected by a NoC

me | | = :
eojenliEojEs eoenl[EsEs » Tightly coupled memory (TCM) accesses are more energy-
| IS < S < I ici -
T T R EETEE efficient than a Last-Level Cache (LLC)
_ llmll> » Local memory access interferences can be managed for
EE EEpEE time-critical computing
S T e e e . .
(ML W - Asynchronous one-sided communication (DMA)
_ _ i cll> = Generalization of OpenCL async_work group copy
[ o B = Zero-copy, non-blocking data transfers like in MPI-3

o T )
RN R = Accesses to other cluster local memories and external DDR
e == == == memories through remote DMA over NoC

- . ..> = Coordination through remote atomic operations and remote
== S e 5 e e queues

R T EE
i | | mmlew Load/store accesses to external memory

= Mostly used for CPU application software porting
_ = Less efficient than DMA, not time-predictable
» Required for load/store external memory accesses that
cannot be converted to asynchronous data transfers
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KALRAY VLIW CORES
MPPA BOSTAN AND MPPA COOLIDGE

Energy efficiency benchmark Coremark/MHz benchmark
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(1) Source: “An Instruction Level Energy Characterization of ARM Processors”, ARM Cortex, FORTH-
ICS/TR-450, March 2015 (ARM Cortex A15 & ARM Cortex A7)
(2) Source: Measured on Matrix Multiply EPI Test + Source Bill Dally, “To ExaScale and Beyond” - Nvidia
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MPPA® BOSTAN VS COOLIDGE ON CNN INFERENCE

Caffe GoogleNet
(Frame per second)

16nm Coolidge @ 1200MHz

16nm Coolidge @ 600Mhz

28nm Bostan @ 600MHz

20nm GPU @ 1GHz

(*) Half Precision FLOPS - 16 FMA/cycle/core with CNN co-processor

Including PCle gen3 x8 — DDR4 3200 — Ethernet 4x1Gb
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MPPA" Processor Co-Design for Avionics

= U. Saarland / Absint GMBH recommendations on VLIW '
core and cache micro-architecture design ( -ERTARINTY

= AbsInt provides the aiT static timing analysis tool
used to certify flight control systems at Airbus

= AbsInt aiT tool targets the Kalray VLIW cores
= Processor design with a focus on timing predictability

= Core level: micro-architecture
v" Fully timing compositional core
v LRU caches and write buffer
v’ Cache bypass memory loads

rtification of Feal Time

= Cluster level: multi-banked shared memory \pplications deslghled
v’ Core-private buses for memory bank access RrmpREerHes
v’ Address interleaving or blocking across banks THALES 9 e ke

» Processor level: NoC/DDR guaranteed services /4R
v" NoC minimum bandwidth & maximum latency et
v DDR controller configurations and address mapping

€
Absint

UFFSALA Eidgendssische Technische Hochschule 20rich
UMNIVERSITET Swiss Federal lnstitute of Techmology Zurich

:
e s
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MPPA Processing Platform

= Aprocessing platform is the combination of the processor architecture and basic
software exposed to applications
= MPPA applications are contained into execution domains
= Set of execution resources isolated from each other by locked out configurations

= Applications in different domains can only interact through external interfaces (PCle,
Ethernet)

= Each MPPA domain may be assigned a criticality level
» Hard real-time (typically time-triggered) (SCADE Suite, Simulink)
= Softreal-time (typically event-triggered) (Dataflow, OpenVX)
= Best effort (typically high-performance) (OpenCL, OpenMP)

= Inside a domain, the Kalray mOS hypervisor based on exo-kernel principles
enforces robust spatial partitioning

= Domains are decomposed into one or more partitions
= Partitions communication mechanisms are mediated by mOS
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MPPA SOFTWARE ECOSYSTEM

FOR SAFE & EFFICIENT APPLICATIONS
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° KALRAY

ANSYS o ®
_ SCADE Code Generation for the MPPA
ESTEREL
e
= Safety-critical control-command applications
» Model-based programming using SCADE Suite® from Esterel Technologies
=  Complemented with static timing analysis of binary code (aiT from AbsInt)

= Retargeting of the formally proven bug-free CompCert C99 compiler

= Motivations for multicore and manycore execution

= Distribute the compute load across cores and reduce memory interferences
30 ms

30 ms NN

>
> Core 1 k{

——)- Core 1

—;—)-Core 2

12 me Lore3

= Effective implementation of multi-rate harmonic applications
» Envision use of fast Model Predictive Control (MPC) techniques
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B =

&IOL eMCOS for MPPA® Processors

Embedded Excellence™

= eSOL eMCOS is the world’s first many-core RTOS for embedded use
= Runs on the MPPA’ clusters on top of mOS exo-kernel

Hard real-time threads:
Pri 2 .:II. Pri 5
C=E . . These threads are

whenever its ready

Pri 10 Pri 45 Pri 11 Pri 9
Pri 20 Pri 55 Pri 12 Pri 11 .
Soft real-time threads:
BN a0 il RS These threads are load-
Pri 70 balanced
Core 1 Core 2 Core 3 Core 4

BEIERN  RUNNING
Pri# | READY

) Pri # Non-READY
Threads used for load calculation:

Any ready thread, including running,
regardless of thread group

©2016 - Kalray SA All Rights Reserved ENSTA 2016
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MPPA® Extensions of OpenCL 1.2

= Parts of standard OpenCL that are useful on a manycore processor

= Host program allocates global buffers, creates executables kernels, and dispatches
work in queues

= Kernelinvocation with a user-defined argument list, which distinguishes between local
and global objects

= QOpenCL extensions for CPU-based manycore platforms
= Kernel code written in standard C/C++ and/or assembly language
= Kernel code with CPU multi-threading [TI’s “OpenMP Dispatch With OpenCL”]
= Kernel code that accesses the local memory of other Compute Units

= QOpenCL 1.2 extensions for the MPPA® processor
= Usethe OpenCL Task Parallel mode to dispatch one Work Group of one Work Item on
each cluster

= Kernel code linked with ELF executable uses Pthreads or GCC OpenMP to activate
cluster cores

= Kernel code accesses the full asynchronous one-sided communications &
synchronizations API
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Dual 2D-torus NoC

Direct network, wormhole switching
D-NoC: high-bandwidth RDMA
C-NoC: low-latency mailboxes
4B/cycle per link direction per NoC

Nx10Gb/s NoC extensions for connection
to FPGA or other MPPA®

Rate-based QoS

Source routing must ensure deadlock-
free traffic

Data NoC is configured by selecting
routes and injection parameters

Injection parameters are the (o,p) or
(burst, rate) of network calculus
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° KALRAY

Interconnection Network Concepts

= Topology
= How the nodes are connected together
» Direct network if routing nodes can be endpoints
= Switching
= Allocation of network resources (bandwidth, buffer capacity, ...) to
information flows

=  Flow control
= How a downstream node forwards availability to an upstream node
= Applies at hop level, entry-to-exit level, and transport level

= Routing

= Path selection between a source and a destination node in a particular
topology

©2017 - Kalray SA All Rights Reserved ETR 2017 18
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MPPA"-256 Bostan NoC Switching

= Network switching techniques

= Circuit switching: network resources are dedicated over an end-to-end path
before transmission starts

= Packet switching:
= Store and forward: node buffers entire packet before forwarding

= Virtual cut-through: node starts forwarding as soon as buffer space for a
whole packet is available on the next node

= Wormhole switching: the packet is decomposed into flits that travel in a
pipelined fashion, buffering is applied at flit level

= The MPPA® NoC implements wormhole switching with source routing
and without virtual channels

= A packet is composed of header flits and payload flits (32-bit flits)
* The packet follows a route determined by a bit string in the header

©2017 - Kalray SA All Rights Reserved ETR 2017 19



A packet is composed of several flits

The header flits governs the route N~ T ____ _ f!
The payload flits follow the header in O ),

a pipeline fashion \>IIII

When the required channel is busy,
the hop flow control blocks the trailing

flits and they stay in flit buffers along 5 ‘
the established route O --------------------------- (B)

©2017 - Kalray SA All Rights Reserved ETR 2017

20



° KALRAY

Wormhole Switching NoC Issues

= Complextoimplement

= May be true for input queueing &
output matching (e.g. iSLIP)

= The MPPA® NoC routers only
include demultiplexers, output
queues and RR arbiters

= Prone to deadlocking

* Inthisexample, the red flow
cannot use R3->R2 because the
blue flow is using it

= Likewise, the blue flow needs
R1->R4 held by the red flow

= Deadlock requires full queues

©2017 - Kalray SA All Rights Reserved ETR 2017 21
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KALRAY
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Rate-Based MPPA° NoC Guaranted Services

= Data NoC packet injection implements a (o,p) regulation
= No more than o+p(t-s) flits are injected for any interval [s,t]

Cumulative flit count

|

time

= Application of Deterministic Network Calculus (DNC) prevents NoC
congestion and provides bounds on end-to-end delays

= Application of DNC requires that flows be routed feed-forward

©2017 - Kalray SA All Rights Reserved ETR 2017 24
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Constraints and Objectives of NoC Routing

Assume that endpoints are given for each flow

Routes must be chosen to avoid deadlock
= Always an issue on wormhole switching networks.

Routes must compose a feed-forward network
= To enable application of the main DNC results

Select routes for each flow to optimize use of the global network
capacity, while guaranteeing a fair bandwidth allocation to the flows

Max-min fairness: an increase of any flow rate must be at the cost of a
decrease of some already smaller flow rate

= Max-min fair allocation is solved by the simple 'Water Filling’ algorithm in case there is
one unique path available per flow

» |n case of multiple paths available per flow and splittable flows, the problem is of
polynomial time complexity and can be solved as a series of linear programs

= When only a single path among those available can be assigned to the flow, the max-
min fairness with unsplittable path problem becomes NP-hard

©2017 - Kalray SA All Rights Reserved ETR 2017 26
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Deadlock-Free Deterministic Routing

= Deadlock results from circuits of agents and resources connected by a
wait-for relation [Dally & Seitz 1987]

= Circuit switching: agents are connections; resources are channels
= Wormbhole switching: agents are packets; resources are link buffers
= Links between routers and links internal to routers (‘turns’)
= Resource dependence graph

= Whenever an agent is holding resource R; while waiting for resource R, a
dependence between R; and R; exists

= Deadlock can be avoided by eliminating circuits in dependence graph
= Deadlock-free packet switching

= Restrict routing to remove circuits from the resource dependence graph

= Equivalently, there must be a numbering of the resources such that each
allowed route traverses increasingly numbered resources

©2017 - Kalray SA All Rights Reserved ETR 2017 27
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Deadlock-Free Routing Wormhole Switching

= Deadlock-free wormhole routing = Application to the MPPA® NoC

techniques when the network = [solate a 2D mesh in NoC
topology is a 2D mesh topology and apply one of these
= Dimension Order (X-Y on 2D routing techniques
meshes) 5~

= Turn Model [Glass & Ni 1994] (not
the same as Turn Prohibition
[Starobinski et al. 2003])
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Turn Models

= West First = North Last
= No North-West turn = No North-West turn
= No South-West turn = No North-East turn

I I
I R _1 LJ
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Odd-Even Routing

= The adaptiveness of the Turn Model [Glass & Ni 1994] is uneven

= At least half of the source-destination pairs are restricted to having only one
minimal path [Chiu 2000]

= The Odd-Even turn model [Chiu 2000] is fully adaptive
= Even columns: East-North and East-South turns are prohibited
* Odd columns: North-West and South-West turns are prohibited
= 180-degree turns are prohibited

= Hamiltonian-based Odd-Even [Bahrebar & Stroobandt 2015]

» Designed to be compatible with the Multi-Path (MP) and the Column-Path
(CP) routing algorithms for path-based multicast

= Considers Odd/Even rows instead of Odd/Even columns
= 180-degree turns are prohibited

©2017 - Kalray SA All Rights Reserved ETR 2017 30



l:. KALRAY

Hamiltonian Odd-Even Prohibited Turns

= Evenrows = Oddrows
= East-South turn prohibited = North-East turn prohibited
= North-West turn prohibited = West-South turn prohibited
0 m (-\ G) Odd Pé \' N Odd
D Even 1 ) Even
4 a A ) Odd 6 \'?" _ Odd

@ 14 13 15 ) Even @Even
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Feed-Forward Flow Routing

= Anetwork is feed-forward if it is possible to find a numbering of its links
such that for any flow through the network, the numbering of its
traversed links is an increasing sequence

= Application of a deterministic deadlock-free routing algorithm for
wormhole switching ensures that the flows are feed-forward

= The links considered in a feed-forward network form a subset of the
resources considered for deadlock in wormhole switching

= The numbering of these resources so that they are allocated in ascending
order by any packet is also a numbering of the links which is traversed in
ascending order by the flows

= Conversely, feed-forward flow routing on a wormhole switching network
implies deadlock-free routing of flow packets

» Feed-forward flow routing ensures that the Turnnet has no cycles
= With wormhole switching, acyclicTurnnet implies acyclic resource graph

©2017 - Kalray SA All Rights Reserved ETR 2017 32



Feed-Forward Routing Techniques

= Spanning tree routing

= Construct a spanning tree of the
network graph and prohibit use of
links outside the spanning tree

= Up-Down routing

= Construct a spanning tree of the
network graph, order nodes according
to their tree level, and prohibit turns
(a,b,c) suchthata<bandb>c

=  Turn Prohibition [Starobinski et al. 2003]
= Recursively break all the link cycles while preserving global connectivity

= Simple Cycle Breaking [Levitin et al. 2010]
= |mprovement of Turn Prohibition, still assume bi-directional turns
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Experimental Comparison Setup

= Compare deadlock-free routing and feed-forward routing algorithms on
flow routing problems

= Example 1 and Example 2 extracted from NoC and AFDX papers
= Bit-Complement, Bit-Reverse, Shuffle, Tornado on MPPA® NoC

©2017 - Kalray SA All Rights Reserved ETR 2017 34
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Minimal Path Diversity Results

= For each flow, enumerate all minimal paths between endpoints allowed
by the routing algorithm

= Figure displays min, max and and average of minimal path counts

21,
19
17 |
15 |
13|
|

Example 1 Example 2 Bit-Complement  Bit-Reverse Shuffle Tornado

'_'A.

TR "-I'L-.LI-.._l'\l-

XY HOESCE TP XY HOESCE TP XY HOESCB TP XY HOESCB TP XY HOESCE TP XY HOESCE TP

= WL =~ W
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Max-Min Fair Flow Rates Results

= Solve max-min fair routing with unsplittable paths by enumeration
= Figure displays rate range and rate average over flows

= On Bit-Complement, X-Y outperforms HOE applied once

= HOE should be applied to the 2D-grid not only on rows but also on columns

. Example 1 Example 2  Bit-Complement Bit-Reverse Shuffle Tornado

08 |

0,7 '

05 i - i -

04 ' i

03

02 - |

01 == |
0 : - : : .

XY HOESCB TP XY HOESCB TP XY HOESCB TP XY HOESCB TP XY HOESCE TP Xy HOESCB TP
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Deterministic Network Calculus

= Compute deterministic upper/lower bounds in communication networks
= Flows are represented by cumulative data transferred up to time t
= Servers are abstracted as relations between input and output flows

4 data
delay(t

backlog(t
A A

» time

= Framework based on (min,+) dioid instead of (+,*) ring or field

(f ® g)(t) = infocs<c (f(t — 5) + g(s)) convolution
(f @ 9)(t) = supso(f (t +5) — g(s)) deconvolution
fOg=h=f=<h®yg duality
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Arrival Curves

= Anarrival curve a(t) is a traffic contract on a cumulative arrival A(t):
= Vt,d = 0,A(t+d) —A(t) < a(d) equivalentto4A <A QR «

= Leaky-bucket arrival curve:
a(t) = (0 + pt)y,,,

= TSPEC arrival curve:
(X(t) = mln(M + pt; o+ pt)1t>0

©2017 - Kalray SA All Rights Reserved ETR 2017
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Service Curves

= Aserver has a lower service curve [3(t) iff for any input A(t):
= Qutput flow A’(t) satisfiesA' > A @ Band (0) =0

= Rate-latency service curve:

B(t) =R [t—Tl, i /////

B 7
T/NR rd

= Aserver has a strict service curve B(t) iff for any input A(t):

= Forany period (s, t] during which the flow is backlogged
A'(t) —A'(s) =2 B(t — 5)

»time
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Main DNC Results

= Constraint propagation rule

= Aflow A(t) with arrival curve a(t) that traverses a server with service curve
B(t) results in a flow A’(t) constrained by arrival curve a @ f(t)

= Tandem composition rule

*= The service curve of a tandem of two of servers with respective service curves
B,(t) and B,(t) is the convolution ;& B, (t)

= Tight delay and backlog bounds o /%/

= |f aflow has arrival curve aft) and
a server offers service curve B(t):
» backlog = max,, (a(t) - B(t))
» delay=h(a, )=
maX,, { inf s20: a(t) < B(t+s) }

backlog B
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Flow Aggregation in Servers

= Blind multiplexing (packets of different flows served in arbitrary order)

= Assume a node serving the aggregate of two flows with the strict service
curve 3(t); assume flow 2 is a,-smooth

= Then aservice curve for flow 1is B, (t) = [B(t) — o, (t)]*

= FIFO multiplexing (packets of different flows in same FIFO queue)

= Assume a node serving the aggregate of two flows in FIFO order with the
lower service curve [3(t); assume flow 2 is a,-smooth;

define the Bg family as Ba(® = [B() - az(t — 8)]" 1i>gy
= For06=0, ifﬁé is wide-sense increasing, it is a service curve for flow 1
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End-to-End Delay Bounds

= Without aggregation: use tandem composition (PBOO)
= Delay=h(a, B*) athe arrival and 3* the convolution of service curves

a Bl Bz a B* :%® Bz
= With aggregation [Bouillard & Stea 2015]:
= Separated-Flow Analysis (SFA)

» First compute the equivalent service curves for tagged flow on its path
» Then compute the convolution of the curves thus obtained
= Pay Multiplexing Only Once (PMOO)
» |solate path segments carrying the same flows
» First compute the convolution of the service curves on the segments
» Then compute the equivalent service for tagged flow
= Neither method is tight or best, however the SFA is simpler to engineer
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MPPA® NoC Guaranteed Services

= Assume tasks are allocated to endpoints (NoC nodes)

= Allocate one path for each pair of endpoints with deadlock-free routing
= Onwormbhole switching NoC, this ensures feed-forward flows
» Hamiltonian Odd-Even routing on 2D grid sub-topology of NoC
= Solve max-min fairness with unsplittable path constraint (NP-hard)
* This computes the maximum flow rates p between each endpoint

= Compute upper bounds on burstiness (o) at ingress for each flow
= Turn queues must not overflow, which constrains the initial burstiness (o)

= Compute service curve offered to turn queues using either round-robin packet
scheduling or blind multiplexing

= Use FIFO multiplexing formulas for aggregation inside turn queues
= Forthe burstiness increase and for the left-over service curves

= Compute the end-to-end delay bounds for each flow using SFA
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Packet Injection Constraints with Link Shaping

= Arrival curve isy, , shaped by the ‘turn’ link atrater = p
» Letr betheinjection rate and "% the maximum packet size

gi

T—pi

"ThG = Gt ST =

max max Oi max T —Pi
n GLZZ —piTi®Gi2l _pir—pi®6i2l —

T flits

|max

shaping curve
a(t)=o+pt

flit injection rt

0 time
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Turn Queue Service Curves

= Onthe MPPA® NoC, the output link arbiters operate in round-robin on
turn queues at the packet granularity, while each queue contains flows
aggregated in FIFO

= The service offered to each queue of a link arbiter abstracted as Sy 1
= Either, the rate and latency ensured by round-robin packet scheduling

min max
TEFJ . E:kijka
.?1-

J — . J
R = fmin L Z Jmax and T'
Fi keBi 'pk

= Or, theresidual service guaranteed by blind multiplexing across queues
when the round-robin service does not apply

k
RI=r— E p¥ and TV = 2ikens T k
ke B "= keBi P

= See paper for the explanation of these f ;- formulas
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Turn Queue Constraints with Link Shaping

= Service curve to queue is abstracted as g 1
= Lety,, bethearrival curve of the flow aggregate in queue
= Backloginthe turn queueis < Qqize
» ft<Too<(@—-p)Tthenb= o+ pT
* Elseb=1r1—R(t—-T)<b =gjfj§a+RT
» Always safetouseformulab = o + pT

A

 flits rt

i flits I a(t)zypt

BO=RI[t-T]* BO=RI[t-T]*

T T time T 1 time

o
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Burstiness Increase of Flows

= Service curve to queue is abstracted as g 1
= Lety,, bethearrival curve of the flow in queue

flits arrival curve
a(t)=o+pt

= No multiplexing in queue o+pT |
................................ frrrreeend service curve
" (04, p0) > (0; +piT,pi) °

BO=RI[t-T]*

T time

=  FIFO multiplexing in queue
= Lety,, s bethesum of arrival curves of other flows in the queue

" (04, p) > (0;+pi(T + %) pi)
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FIFO Multiplexing with Link Shaping

= Burstiness increase due to FIFO multiplexing, general case

= Assume that flow 1is constrained by y, 5, and flow 2 is constrained by a

sub-additive arrival curve a,. Assume that the node guarantees to the
aggregate of the two flows a rate latency service curve i . Call p, =
inf;~ o a, /t the maximum sustainable rate for flow 2.

= Ifp; + p2 <R, thenattheoutput, flow 1 is constrained by y, 5.
" by =0, +p(T+ %) with B = sup[a,(t) + p;t — Rt]

t20
= With link shaping, a, (t) = min(rt, p,t + 0,) and T = rff)z
= B =sup(sup [rt + p;t — Rt],sup[p,t + 0, + p;t — Rt]):maz
0<t<t t=1 r=p2
. _ 02(r+p1—R)y . .1y 02(r+p1—R) _ oy
by =01+ p1(T+ R(—p2) ) with RO—p2) <—asp;tp; <R
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End-to-End Latency with Link Shaping

= End-to-end residual service curve for flow of interest is S 1

= With R the min of the residual rates and T the sum of the residual latencies
= Maximum delay is d =max,.,{ inf s=0: a(t) = B(t+s) }

= Maximum horizontal deviation is reached between T and §

= r7=(6—T)R witht =2

r—p

s d=6-7=T+2ZR
R(r—p)

Tlits rt a(t)=o+pt

ﬁét): R[t-T]*

T1t 5 time
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Lessons Learned

= Deterministic deadlock-free routing and feed-forward flow routing are equivalent
on a wormhole switching NoC
= First application of Turn Prohibition and Simple Cycle Breaking to a NoC
= Computing (maximum) flow rates in a preliminary step enables the formulation
of DNC equations to be linear with the burstiness variables
» Thanks to feed-forward flows, set of acyclic inequalities solved in one pass
= Good solutions to the max-min fairness with unsplittable paths problem
instances on MPPA® NoC can be found by heuristic

* Round solutions to the max-min fairness with splittable paths problem and enumerate
over splitted paths with the same maximal sub-flow rate

= Hamiltonian Odd-Even routing seems to perform best on MPPA® NoC
= Must be applied vertically and horizontally on a 2D-grid topology
= Motivates a NoC with two virtual channels on the MPPA® Coolidge
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