Uniprocessor real-time scheduling

Julien Forget

Université Lille 1

Ecole d’Été Temps Réel - 30 Août 2017
At the end of this session, you should be (more) proficient at:

- Modeling a real-time system, using the classic periodic task model;
- Programming a set of periodic tasks;
- Testing the schedulability of a task set.
Embedded system

Definition

A special-purpose computer system designed to perform one or a few dedicated functions. Usually embedded as part of a complete device including hardware and mechanical parts. (Wikipedia)

- Dedicated \Rightarrow optimized, reduced resources;
- Handle a system in its (annoying) physical environment.
Reactive system

- React to inputs:
 1. Acquire inputs on sensors;
 2. Compute;
 3. Produce values on actuators.

- Actions impact the environment, thus subsequent inputs;

- Response time must be *bounded*.

Julien Forget (Université Lille 1)
Uniprocessor real-time scheduling
ETR 2017
Real-time system

Definition

Real-time systems must guarantee response within strict time constraints, often referred to as “deadlines”.

(Wikipedia)

- A sub-class of reactive systems;
- Usually embedded;
- Often critical.
Classify these systems

Discuss which systems are embedded, reactive, critical, real-time:

- Airplane flight control system;
- Data base;
- ABS;
- Compiler;
- Nuclear power plant control system;
- MP3 player;
- GSM communication;
- Video processing on chip.
Real-time systems classes

- **Hard** real-time: missing a deadline has catastrophic consequences;
- **Soft** real-time: missing a deadline degrades the behaviour (notion of quality of service or performance level).
Hard or soft real-time?

- Mpeg Video decoder;
- Airplane flight control system;
- Car cruise control;
- GSM communication.
Outline

1 Real-time model

2 Scheduling

3 Fixed-task priority

4 Fixed-job priority

5 Shared resources

6 Data-dependencies

7 Conclusion
Event-driven vs time-driven

- Event-driven system:
 - Wait for input;
 - Compute;
 - Produce output;
 \Rightarrow Must produce output before occurrence of next event.

- Sampled system:
 - Acquire input at regular intervals of time;
 - Compute;
 - Produce output;
 \Rightarrow Must produce output before start of next interval.

- Inter-arrival time of events is often bounded:
 \Rightarrow When so, both models are not that much different (sporadic tasks).
Periods are the prime real-time constraints:

- Period (T_i): repetition interval of a task;
- Choosing a period:
 - Upper-bounded:
Periods are the prime real-time constraints:

- Period \((T_i)\): repetition interval of a task;
- Choosing a period:
 - Upper-bounded: system dynamics (e.g. airplane stability);
Periods are the prime real-time constraints:

- Period (T_i): repetition interval of a task;
- Choosing a period:
 - Upper-bounded: system dynamics (e.g. airplane stability);
 - Lower-bounded:
Periods are the prime real-time constraints:

- **Period** (T_i): repetition interval of a task;

Choosing a period:
- Upper-bounded: system dynamics (e.g. airplane stability);
- Lower-bounded: sensor/actuator capabilities and processor load;
Periods are the prime real-time constraints:

- Period (T_i): repetition interval of a task;
- Choosing a period:
 - Upper-bounded: system dynamics (e.g. airplane stability);
 - Lower-bounded: sensor/actuator capabilities and processor load;
 - Choose a period close to
Periods are the prime real-time constraints:

- **Period** (T_i): repetition interval of a task;
- **Choosing a period:**
 - Upper-bounded: system dynamics (e.g. airplane stability);
 - Lower-bounded: sensor/actuator capabilities and processor load;
 - Choose a period close to upper-bound to reduce load:
Periods are the prime real-time constraints:

- Period \((T_i)\): repetition interval of a task;
- Choosing a period:
 - Upper-bounded: system dynamics (e.g. airplane stability);
 - Lower-bounded: sensor/actuator capabilities and processor load;
 - Choose a period close to upper-bound to reduce load:
 - Reduce hardware cost;
 - Reduces energy consumption.
- Related attributes: release date and deadline.
Deadline

- Deadline (D_i): bounds the accepted response time of a task;
- $D_i = T_i$:
 - Most classic model;
 - A task invocation must complete before its next invocation;
- $D_i \leq T_i$:
 - In some cases related to system dynamics, e.g. actuator physical reaction time;
 - Often used as an implementation “trick”: influence schedule by increasing task priority (e.g. see data-dependencies).
- $D_i \geq T_i$: rarely used, but studied in literature.
Offset

- Offset (O_i): wait before the initial release of a task;
- Rarely related to system dynamics;
- Again often used as an implementation “trick”: delay the point where a task becomes ready (e.g. see data-dependencies).
Worst-Case Execution Time (WCET)

- WCET (C_i): execution-time of a task;
- Exact execution time hard to predict;
- Instead, provide a safe but pessimistic upper-bound;
- Not an actual constraint: execution time will usually (hopefully) be shorter;
- Used mainly for schedulability analysis.
Task model

- Task $\tau_i(C_i, T_i, D_i O_i)$:
 - $\tau_{i,k}$: the k^{th} ($k \geq 0$) invocation or job of τ_i;
 - $o_{i,k} = O_i + kT_i$: release date of $\tau_{i,k}$;
 - Sporadic tasks: $o_{i,k} \geq O_i + kT_i$;
 - $d_{i,k} = o_{i,k} + D_i$: absolute deadline of $\tau_{i,k}$.

- In this example:
 - $\tau_1(3, 6, 4, 0)$;
 - Deadline constraints are met;
 - $\tau_{1.1}$ and $\tau_{1.2}$ are preempted;
 - $\tau_{1.2}$ executes for less than C_1.
Impact of deadline misses: UAV control

- GPS (input): 1 frame every 250 ms.
 - Deadline miss \Rightarrow frame lost, i.e. current position lost.
- Inertial measurement unit (input): 1 message every 20 ms.
 - Deadline miss \Rightarrow loss of control.
- Radio-command (input): 5 inputs updated every 20 ms.
 - Deadline miss \Rightarrow non-fluid control.
- Servo-command (output): 5 outputs updated every 20 ms.
 - Deadline miss \Rightarrow non-fluid control.
Data for artificial ground control (output): every 50ms
- Deadline miss \Rightarrow flight display delayed.

Navigation (trajectory): same as GPS.
- Deadline miss \Rightarrow wrong trajectory.

Failure detection (internal): every 200ms
- Deadline miss \Rightarrow crash with motors on.

Attitude regulation (output): once every 3 IMU cycle, i.e. 60ms
- Deadline miss \Rightarrow loss of control.
void* periodic_task1(void* args) {
 // initialization
 wait_for_release();

 while (1) {
 task_functionality();
 wait_next_activation();
 }
}

- Wait for release if \(O_i \neq 0 \) or task startup not synchronized (OS-dependent);
- “Immediate loop” bug: don’t forget to wait for next activation!
- This is a very classic structure:
 - Yet, not enforced by the OS or compiler;
 - In some RTOS, programmer only provides the `task_functionality` function, repeated automatically by the OS.
Invoking tasks

```c
int main() {
    create_task(periodic_task1, args1, RTparams1);
    create_task(periodic_task2, args2, RTparams2);
    
    start_scheduler();
    (or) while (1);
    // This should never be reached
    return 1;
}
```

- **Arguments of task creation:**
 - periodic_taski: pointer to task function (see previous slide);
 - argsi: the arguments of periodic_taski;
 - RTparamsi: the real-time parameters;

- **Task startup:**
 - Linux-based OS: immediate (at task creation) ⇒ need to synchronize initialize releases;
 - Others: when starting the scheduler (start_scheduler).

- **Warning:** in Linux-based OS, termination of main() terminates tasks ⇒ prevent termination with while(1).
Outline

1. Real-time model
2. Scheduling
3. Fixed-task priority
4. Fixed-job priority
5. Shared resources
6. Data-dependencies
7. Conclusion
A two-fold problem

Real-time scheduling

Scheduling is the method by which work is assigned to resources. In real-time systems, the scheduler also must ensure that processes can meet deadlines. (Wikipedia)

This involves:

- Designing a scheduling policy: an algorithm that dictates how to assign work to resources;
- Designing a schedulability analysis: a test that verifies, before execution, that the policy will definitely satisfy the real-time constraints of the system.
Scheduling: OS vs RTOS

Scheduler objective:

<table>
<thead>
<tr>
<th>General-purpose OS</th>
<th>RTOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Reduce mean response time</td>
<td>• Ensure bounded response time</td>
</tr>
<tr>
<td>• Equity between processes</td>
<td>• ≠ deadlines means ≠ urgency</td>
</tr>
<tr>
<td>• Independent processes</td>
<td>• Collaborating processes</td>
</tr>
</tbody>
</table>

Be fast, on average | Be in-time, always

For a RT system, faster is NOT better.
Scheduling in the development cycle

- Schedulability analysis always occurs off-line;
- **Off-line scheduling:**
 - Execution order is planned before execution;
 - Assumes a repetitive planning;
 - The (possibly large) planning is embedded;
 - Only requires a dispatcher.
- **On-line scheduling:**
 - Scheduler takes decisions on-line;
 - No-need for a pre-computed schedule;
 - Schedulability can still be analyzed off-line.
Feasibility, schedulability

Feasibility

A schedule for a given task set is *feasible* iff:
- Each job starts after its release date;
- Each job completes before its absolute deadline.

Schedulability

A task set is *schedulable* with a given scheduling policy iff the schedule produced by the policy for this task set is feasible.
Optimality

Definition

A scheduling policy \mathcal{P} is *optimal* iff: if a task set is schedulable by some policy, then it is schedulable by \mathcal{P}.

Warning: Optimality is defined with respect to a certain class of policies, e.g. RM is optimal for fixed-task priority, on-line, preemptive, ...
Reminder: priority-based scheduling

- Each task has a priority;
- The task with the highest priority is scheduled first;
- Several tasks can share the same priority ⇒ Round-robin/FIFO for each priority level;
- RT policies are usually derived from this general policy.

![Diagram showing priority-based scheduling]
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.

![Timeline diagram with tasks τ_1, τ_2, and τ_3 scheduled over time from 0 to 24 units.](image-url)
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.
Example

- Let \(p_i \) denote the priority of task \(\tau_i \);
- Let \(\tau_1 = (2, 6, 6) \), \(\tau_2 = (2, 9, 9) \), \(\tau_3 = (3, 12, 12) \);
- Let \(p_1 = 3 \) (highest), \(p_2 = 2 \), \(p_3 = 1 \).
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.

![Diagram showing the scheduling of tasks τ_1, τ_2, and τ_3.](image-url)
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.

![Diagram showing tasks and priorities](image-url)
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.

![Diagram showing task scheduling](image)
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.
Example

- Let \(p_i \) denote the priority of task \(\tau_i \);
- Let \(\tau_1 = (2, 6, 6), \tau_2 = (2, 9, 9), \tau_3 = (3, 12, 12) \);
- Let \(p_1 = 3 \) (highest), \(p_2 = 2 \), \(p_3 = 1 \).
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.

![Diagram showing task scheduling]

\(\tau_1\) \(\tau_2\) \(\tau_3\)
Let p_i denote the priority of task τ_i;
Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.

![Diagram showing scheduling of tasks τ_1, τ_2, and τ_3 over time.](image-url)
Example

- Let p_i denote the priority of task τ_i;
- Let $\tau_1 = (2, 6, 6)$, $\tau_2 = (2, 9, 9)$, $\tau_3 = (3, 12, 12)$;
- Let $p_1 = 3$ (highest), $p_2 = 2$, $p_3 = 1$.

![Diagram showing the scheduling of tasks τ_1, τ_2, and τ_3 with their respective durations and priorities.](image-url)
1. Real-time model
2. Scheduling
3. Fixed-task priority
4. Fixed-job priority
5. Shared resources
6. Data-dependencies
7. Conclusion
Fixed-task priority policies

- Fixed-task priority: the priority of a task remains the same for the whole execution;
- When $O_i = 0$ and $D_i = T_i$:
 - *Rate Monotonic* is an optimal policy;
 - Shorter period \Rightarrow higher priority.
- When $O_i = 0$ and $D_i \leq T_i$:
 - *Deadline Monotonic* is an optimal policy;
 - Shorter relative deadline \Rightarrow higher priority.
- These policies are very simple to implement;
- In most RTOS, priority is assigned by the programmer, at task creation.
Since $O_i = 0$ and all tasks are periodic, the same schedule is repeated every hyperperiod;

Hyperperiod: $HP = \text{lcm}(\{ T_i \})$;

⇒ Check schedulability by simulating the execution until date HP.

Example

Compare the hyperperiod of these task sets:

- $T_1 = 8$, $T_2 = 12$, $T_3 = 24$
Since \(O_i = 0 \) and all tasks are periodic, the same schedule is repeated every hyperperiod;

Hyperperiod: \(HP = \text{lcm}(\{ T_i \}) \);

\[\implies \text{Check schedulability by simulating the execution until date } HP. \]

Example

Compare the hyperperiod of these task sets:

- \(T_1 = 8, T_2 = 12, T_3 = 24 \) \(\implies HP = 24 \)
Since $O_i = 0$ and all tasks are periodic, the same schedule is repeated every *hyperperiod*;

Hyperperiod: $HP = \text{lcm}(\{T_i\})$;

⇒ Check schedulability by simulating the execution until date HP.

Example

Compare the hyperperiod of these task sets:

- $T_1 = 8, \ T_2 = 12, \ T_3 = 24 \Rightarrow HP = 24$
- $T_1 = 7, \ T_2 = 12, \ T_3 = 25$
Schedulability analysis: Simulation

- Since $O_i = 0$ and all tasks are periodic, the same schedule is repeated every hyperperiod;
- Hyperperiod: $HP = \text{lcm}(\{T_i\})$;
 \[\Rightarrow \text{Check schedulability by simulating the execution until date } HP. \]

Example

Compare the hyperperiod of these task sets:
- $T_1 = 8$, $T_2 = 12$, $T_3 = 24 \Rightarrow HP = 24$
- $T_1 = 7$, $T_2 = 12$, $T_3 = 25 \Rightarrow HP = 2100$
Since $O_i = 0$ and all tasks are periodic, the same schedule is repeated every hyperperiod;

Hyperperiod: $HP = \text{lcm}(\{T_i\})$;

⇒ Check schedulability by simulating the execution until date HP.

Example

Compare the hyperperiod of these task sets:

- $T_1 = 8, T_2 = 12, T_3 = 24 \Rightarrow HP = 24$
- $T_1 = 7, T_2 = 12, T_3 = 25 \Rightarrow HP = 2100$

Worst-case: tasks have co-prime periods ⇒ HP is exponential w.r.t. number of tasks;

Practical case: tasks have harmonic periods ⇒ HP is equal to highest period.
Schedulability analysis: Utilization Bound

- Let $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$ the Utilization Ratio;
- The utilization bound U_{lub} is a value such that: $U \leq U_{lub} \Rightarrow$ feasible.

Theorem, Liu & Layland 1973

Consider n periodic (or sporadic) tasks with $D_i = T_i$, whose priorities are assigned in RM order. Then:

$$U_{lub} = n(2^{1/n} - 1)$$

- U_{lub} decreases with n;
- For $n = 2$, $U_{lub} = 0.83$, for large n, $U_{lub} \approx 0.69$.

Warning: This test is sufficient, but not necessary! It is very simple to find schedulable task sets with $U_i = 1$; Experiments show that the actual average bound is around 88%.
Schedulability analysis: Utilization Bound

- Let $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$ the Utilization Ratio;
- The utilization bound U_{lub} is a value such that: $U \leq U_{lub} \Rightarrow$ feasible.

Theorem, Liu & Layland 1973

Consider n periodic (or sporadic) tasks with $D_i = T_i$, whose priorities are assigned in RM order. Then:

$$U_{lub} = n(2^{1/n} - 1)$$

- U_{lub} decreases with n;
- For $n = 2$, $U_{lub} = 0.83$, for large n, $U_{lub} \approx 0.69$.

Warning:
- This test is sufficient, but not necessary!
Schedulability analysis: Utilization Bound

- Let $U = \sum_{i=1}^{n} \frac{C_i}{T_i}$ the Utilization Ratio;
- The utilization bound U_{lub} is a value such that: $U \leq U_{lub} \Rightarrow$ feasible.

Theorem, Liu & Layland 1973

Consider n periodic (or sporadic) tasks with $D_i = T_i$, whose priorities are assigned in RM order. Then:

$$U_{lub} = n(2^{1/n} - 1)$$

- U_{lub} decreases with n;
- For $n = 2$, $U_{lub} = 0.83$, for large n, $U_{lub} \approx 0.69$.

Warning:

- This test is sufficient, but not necessary!
- It is very simple to find schedulable task sets with $U_i = 1$;
- Experiments show that the actual average bound is around 88%.
Schedulability analysis: Response Time Analysis

- Response-time: duration between job release and job completion;
- Main idea: check that worst-case response-time is lower than deadline for every task;
- RTA is a necessary and sufficient schedulability test;
- RTA does not require to explore the complete hyperperiod.

Theorem
The worst-case response time of a task of priority P_k is equal to the longest k-busy period.
Busy-period

Definition

k-busy period: processor executes tasks of priority higher than k.

![Diagram showing workload and time relationship with idle points and busy periods](image)
Computing an $i-$busy period

- **Inductive definition (Pseudo-polynomial):**

 \[B_{i,0} = C_i \]

 \[B_{i,k+1} = C_i + \sum_{j \in hp(i)} \left\lceil \frac{B_{i,k}}{T_i} \right\rceil C_j \]

- $hp(i)$ tasks with priority higher than i;
- **Stop when:**
 - Reaching a fixed-point, i.e. $B_{i,k+1} = B_{i,k}$;
 - $B_{i,k} > D_i$.

\[\text{NB: This works for any optimal fixed-priority policy; The scheduling policy only impacts the definition of } hp(i); \]
\[\text{We can use this test for RM and DM.} \]
Computing an $i-$busy period

- Inductive definition (Pseudo-polynomial):
 \[
 B_{i,0} = C_i \\
 B_{i,k+1} = C_i + \sum_{j \in hp(i)} \left\lceil \frac{B_{i,k}}{T_i} \right\rceil C_j
 \]

- $hp(i)$ tasks with priority higher than i;

- Stop when:
 - Reaching a fixed-point, i.e. $B_{i,k+1} = B_{i,k}$;
 - $B_{i,k} > D_i$.

NB:

- This works for any optimal fixed-priority policy;
- The scheduling policy only impacts the definition of $hp(i)$;
- We can use this test for RM and DM.
RTA for tasks with offset \((O_i \neq 0)\)

- **Critical instant**: a date where all tasks are released simultaneously;
- *The longest busy period is initiated by the critical instant*;
- When \(O_i = 0\), a critical instant occurs at date 0;
- This lies at the heart of RTA for case without offset;
- When \(O_i \neq 0\), the critical instant may not exist, so RTA requires to study all busy periods up to \(\max(O_i) + 2HP\).
Audsley’s scheduling policy \((O_i \neq 0)\)

- \(DM\) is not optimal when \(O_i \neq 0\);
- Audsley proposed a different policy for that case:

\[
\text{for Each priority } lvl, \text{ lowest first do} \\
\hspace{1em} \text{assigned } \leftarrow \text{false} \\
\hspace{1em} \text{for Each unassigned task } \tau_k \text{ do} \\
\hspace{2em} \text{if } \tau_k \text{ schedulable with priority } lvl \text{ then} \\
\hspace{3em} P_k \leftarrow lvl; \text{ assigned } \leftarrow \text{true} \\
\hspace{3em} \text{break the current loop} \\
\hspace{2em} \text{end if} \\
\hspace{1em} \text{end for} \\
\hspace{1em} \text{if assigned=\text{false} then the system is not feasible} \\
\hspace{1em} \text{end if} \\
\text{end for}
\]
Audsley’s scheduling policy

- When testing the schedulability of τ at level lvl:
 - The relative priorities of higher priority tasks does not matter;
 - We can compute the interference of higher priority tasks similarly to how we computed the busy period
 - There is no need for an actual schedule.
- The policy performs $n(n + 1)/2$ “partial” schedulability tests;
- This is both a scheduling policy and a schedulability test;
- This general principle has been applied to several other scheduling problems (see OPA, Optimal Priority Assignment).
Outline

1. Real-time model
2. Scheduling
3. Fixed-task priority
4. Fixed-job priority
5. Shared resources
6. Data-dependencies
7. Conclusion
Fixed-job priority policies

- Fixed-job priority:
 - The priority of a job remains unchained during its execution;
 - The priorities of two jobs of the same task can differ.

- Earliest-Deadline-First is an optimal policy for a large class of problems: $O_i \geq 0$ and $D_i \leq T_i$;

- The job with the shortest absolute deadline has the highest priority;

- In a RTOS:
 - Priorities are assigned to tasks (not jobs);
 - So, EDF requires to change dynamically task priorities;
 - Not all RTOS allow this.
Example, with RM

- $\tau_1 = (1, 4)$, $\tau_2 = (2, 6)$, $\tau_3 = (3, 8)$;
- Utilization is quite high: $U = \frac{1}{4} + \frac{2}{6} + \frac{3}{8} = \frac{23}{24}$
- There is a deadline miss!

\[\begin{align*}
\tau_1 & \quad | & \quad \text{Utilization} \\
\tau_2 & \quad | & \quad \text{Utilization} \\
\tau_3 & \quad | & \quad \text{Utilization}
\end{align*} \]
Same example, with EDF

- $\tau_1 = (1, 4), \tau_2 = (2, 6), \tau_3 = (3, 8)$;
- The task set is schedulable.
Utilization bound

When $D_i = T_i$, the system is schedulable with EDF iff:

$$ U \leq 1 $$

- Extremely simple and efficient test;
- EDF enables higher utilization ratio than RM.
Processor demand

When $D_i \leq T_i$ and $O_i = 0$:

- The worst-case response time does not occur at the critical instant;
- Let $h(t)$ denote the amount of work to complete before time t (processor demand):

$$h(t) = \sum_{i=1}^{n} \left\lfloor \frac{t + T_i - D_i}{T_i} \right\rfloor C_i$$

- Task set is schedulable iff:

$$\forall t, h(t) \leq t$$

- No need to study the processor demand for all t:
 1. $h(t)$ only increases at job deadlines;
 2. We can find a bound on the values of t that must be checked.
Efficient processor demand analysis

- Two known bounds:
 - L_a:
 \[L_a = \max\{D_1, \ldots, D_n, \sum_{i=1}^{n} \left(\frac{T_i - D_i}{T_i} \right) C_i / (1 - U) \} \]
 - L_b computed as the least fixed-point of:
 \[w^0 = \sum_{i=1}^{n} C_i \]
 \[w^{j+1} = \sum_{i=1}^{n} \left\lceil \frac{w^j}{T_i} \right\rceil C_i \]

\Rightarrow Check that $h(t) \leq t$ for each deadline until $\min(L_a, L_b)$.
Fixed-job vs fixed-task priorities

- **Implementation**: DM/RM are easier to implement than EDF;
- **Run-time overhead**:
 - EDF requires to compute priorities at run-time;
 - EDF causes fewer preemptions.
- **Task jitter (response time variation)**:
 - RM/DM cause low jitter on high priority tasks;
 - EDF causes lower average jitter.
- **Overload**: When $U \geq 1$, EDF causes more deadline misses than RM/DM;
- **Processor utilization**: EDF enables higher processor utilization (up to 100%).
Outline

1. Real-time model
2. Scheduling
3. Fixed-task priority
4. Fixed-job priority
5. Shared resources
6. Data-dependencies
7. Conclusion
Shared resource pitfalls

- So far, we considered *independent tasks*;
- In reality, tasks often share *resources* (e.g. data);
- A piece of code accessing the shared resource is called a *critical section*;
- Two or more critical sections on the same resource must be executed in mutual exclusion;
- Each shared resource should be protected by a mutual exclusion mechanism: semaphore, mutex, etc.
- Mutual exclusion mechanisms are a notable source of bugs in computer systems:
Shared resource pitfalls

- So far, we considered *independent tasks*;
- In reality, tasks often share *resources* (e.g. data);
- A piece of code accessing the shared resource is called a *critical section*;
- Two or more critical sections on the same resource must be executed in mutual exclusion;
- Each shared resource should be protected by a mutual exclusion mechanism: semaphore, mutex, etc.
- Mutual exclusion mechanisms are a notable source of bugs in computer systems: deadlocks, starvation, ...
Shared resource pitfalls

- So far, we considered *independent tasks*;
- In reality, tasks often share *resources* (e.g. data);
- A piece of code accessing the shared resource is called a *critical section*;
- Two or more critical sections on the same resource must be executed in mutual exclusion;
- Each shared resource should be protected by a mutual exclusion mechanism: semaphore, mutex, etc.
- Mutual exclusion mechanisms are a notable source of bugs in computer systems: deadlocks, starvation, ...
- Real-time systems introduce their own nasty bugs related to scheduling:
 - Priority inversion;
 - Scheduling anomalies.
Scheduling anomaly

- $\{\tau_1(2, 8, 6), \tau_2(6, 16, 15), \tau_3(6, 16, 16)\}$
- Tasks in grey share resources;
- On the left: schedulability analysis succeeds;
- On the right: τ_2 takes less than WCET, causing a deadline miss.
Priority inversion

- Tasks in grey share resources;
- τ_2 is running while the highest priority task τ_1 is waiting for τ_3 to complete its critical section;

\Rightarrow This causes τ_1 to miss its deadline.
Priority Inheritance Protocol

- Principle: When a task accesses a shared resource, it inherits the priority of the highest priority task that shares this resource until the end of its critical section;

⇒ This completely prevents priority inversion;

- Several variations:
 - Priority Inheritance Protocol (the original): high blocking times;
 - Priority Ceiling Protocol: lower blocking time, complex implementation (priority inheritance), unnecessary context switches;
The preemption level π_i of a task τ_i is:

- For RM/DM: equal to the priority of τ_i ($\pi_i = p_i$);
- For EDF: the inverse of the relative deadline ($\pi_i = 1/D_i$).
Stack Resource Policy: resource ceiling

Definition

The *resource ceiling* of a resource S_k is the highest preemption level of the tasks accessing it (at any time).

$$\text{ceil}(S_k) = \max_i \{\pi_i \mid \tau_i \text{ uses } S_k\}$$

Definition

The *system ceiling* at a given time is the maximum of the resource ceiling of resources locked at that time.

$$\Pi(t) = \max_k \{\text{ceil}(S_k) \mid S_k \text{ is locked at } t\}$$
Stack Resource Policy: the protocol

At time t, task τ_i can start executing iff:

- It is the highest priority task;
- Its preemption level is greater than the current system ceiling:
 $$\pi_i > \Pi(t)$$
Stack Resource Policy: example

- $p_1 > p_2 > p_3$;
- S_1 used by $\tau_1, \tau_3 \Rightarrow \text{ceil}(S_1) = p_1$;
- S_2 used by $\tau_1, \tau_2 \Rightarrow \text{ceil}(S_2) = p_1$.

Task τ_3 raises the sys ceiling Π to p_1
Stack Resource Policy: example

- \(p_1 > p_2 > p_3; \)
- \(S_1 \) used by \(\tau_1, \tau_3 \) \(\Rightarrow \) \(\text{ceil}(S_1) = p_1; \)
- \(S_2 \) used by \(\tau_1, \tau_2 \) \(\Rightarrow \) \(\text{ceil}(S_2) = p_1. \)

- Task \(\tau_3 \) raises the sys ceiling \(\Pi \) to \(p_1 \)
- Task \(\tau_2 \) cannot start because \(p_2 < \Pi = p_1 \)
Stack Resource Policy: example

- $p_1 > p_2 > p_3$;
- S_1 used by $\tau_1, \tau_3 \Rightarrow \text{ceil}(S_1) = p_1$;
- S_2 used by $\tau_1, \tau_2 \Rightarrow \text{ceil}(S_2) = p_1$.

- Task τ_3 raises the sys ceiling Π to p_1
- Task τ_2 cannot start because $p_2 < \Pi = p_1$
- Task τ_1 cannot start because $p_1 = \Pi = p_1$
Stack Resource Policy: example

- $p_1 > p_2 > p_3$;
- S_1 used by $\tau_1, \tau_3 \Rightarrow ceil(S_1) = p_1$;
- S_2 used by $\tau_1, \tau_2 \Rightarrow ceil(S_2) = p_1$.

Task τ_3 raises the sys ceiling Π to p_1
- Task τ_2 cannot start because $p_2 < \Pi = p_1$
- Task τ_1 cannot start because $p_1 = \Pi = p_1$
- When task τ_3 unlocks, the sys ceiling goes down, and all other tasks can start executing
Stack Resource Policy: example

- \(p_1 > p_2 > p_3 \);
- \(S_1 \) used by \(\tau_1, \tau_3 \Rightarrow \text{ceil}(S_1) = p_1 \);
- \(S_2 \) used by \(\tau_1, \tau_2 \Rightarrow \text{ceil}(S_2) = p_1 \).

- Task \(\tau_3 \) raises the sys ceiling \(\Pi \) to \(p_1 \)
- Task \(\tau_2 \) cannot start because \(p_2 < \Pi = p_1 \)
- Task \(\tau_1 \) cannot start because \(p_1 = \Pi = p_1 \)
- When task \(\tau_3 \) unlocks, the sys ceiling goes down, and all other tasks can start executing
Stack Resource Policy: properties

SRP has several useful properties:

- A task can be blocked (waiting for a resource) at most once, at the begining of its execution;
- There are no deadlocks;
- Simple implementation (no priority inheritance).
1 Real-time model
2 Scheduling
3 Fixed-task priority
4 Fixed-job priority
5 Shared resources
6 Data-dependencies
7 Conclusion
Data communications

- Most common shared resource in a real-time system: *shared data*;
- Shared data: a task (called *consumer*) requires data produced by another task (called *producer*) to perform its computations;
- **Register-based communication:**
 - Consume the last value produced;
 - Semantics varies depending on execution order;
 - No impact on task order;
 - Often used in the automotive domain.

- **Causal communication:**
 - Producer must end before start of consumer;
 - Deterministic semantics;
 - Used in avionics systems;
 - Introduces precedence constraints.
Precedence constraints

- Representation: A Directed Acyclic Graph, with vertex=task, edge=precedence (why a DAG?)
Precedence constraints

- Representation: A Directed Acyclic Graph, with vertex=task, edge=precedence (why a DAG?);
- $\tau_i \rightarrow \tau_j$: τ_i must end before τ_j starts;
- When $T_i = T_j$: simple precedence constraint, $\tau_{i.p} \rightarrow \tau_{j.q}$ for all p, q;
- When $T_i \neq T_j$: extended precedence constraint, not all $\tau_{i.p} \rightarrow \tau_{j.q}$ does not hold for all p, q.
Extended precedence constraints: example

Longitudinal flight control system of an aircraft:
- Inputs: current surface angle, current vertical speed, current altitude, altitude required by the pilot;
- Outputs: control surfaces;
- Several multi-rate computation chains.
Some communication patterns

- Extended precedence constraints usually follow repetitive patterns;
- Repetition period = HP.

(a) Sampling, at earliest

(b) Selection, at latest

(c) Array gathering

(d) Array scattering
Precedence encoding, simple precedence constraints

A simple clever technique to schedule dependent tasks:

1. Encode $\tau_i \rightarrow \tau_j$ in real-time attributes as follows:
 - $D_i^* = \min(D_i, \min_{\tau_j \in \text{succs}(\tau_i)} (D_j^* - C_j))$
 $\Rightarrow P_i > P_j$
 - Anyway, τ_i must end early enough for τ_j to end before D_j;
 - $O_j^* = \max(O_j, \max_{\tau_i \in \text{preds}(\tau_j)} (O_i^*))$
 $\Rightarrow \tau_j$ cannot start before τ_i is released.

2. Resulting problem \Leftrightarrow Original problem;

3. Schedule encoded task set with a deadline-based scheduler;

\Rightarrow Optimal policy with DM/EDF.
S_1 = \{(O_i = 0, C_i = 2, D_i = T_i, T_i = 4),
(O_j = 0, C_j = 4, D_j = 6, T_j = 8)\}

\(\tau_i \rightarrow \tau_j\);

\(D_{i,n}^* = 2\) for \(n \in \mathbb{N}\): not schedulable (EDF);

\(D_{i,n}^* = 2\) for \(n \in 2\mathbb{N}\) and \(D_{i,n}^* = 4\) for \(n \in 2\mathbb{N} + 1\): schedulable (EDF);

\(\Rightarrow\) Compute (periodic) job deadline patterns.
Scheduling anomalies

- No anomalies with precedence constraints;
- Precedence constraint enforces relative order of τ_i and τ_j.

(e) Reminder: schedulability analysis

(f) Reminder: anomaly

(g) $\tau_{1.1} \rightarrow \tau_{3.0}$
Priority inversion

- No priority inversion with precedence encoding;
- Precedence encoding \Rightarrow deadline inheritance \Rightarrow priority inheritance.

(h) Reminder: priority inversion

(i) Encoding: no priority inversion
Outline

1. Real-time model
2. Scheduling
3. Fixed-task priority
4. Fixed-job priority
5. Shared resources
6. Data-dependencies
7. Conclusion
To be a proficient real-time developer (on a mono-processor platform) you must be able to:

- Design the software architecture of a real-time system:
 - Choose task periods;
 - Evaluate the impact of deadline misses.
- Program the resulting real-time task set:
 - Define and invoke the different tasks;
 - Pay attention to shared resources;
 - Implement task communications/synchronizations
- Choose the correct scheduling policy;
- Test the schedulability of the task set.
Acknowledgements

This presentation borrows elements from:

- *Emmanuel GROLLEAU (LIAS/ISAE-ENSMA)*, Ordonnancement et ordonnançabilité monoprocesseur, Ecole d’Été Temps Réel (ETR’2011), Brest, 2011

- *Giuseppe LIPARI (Univ. Lille 1)*, Real-time scheduling: from hard to soft, Ecole d’Été Temps Réel (ETR’2015), Rennes, 2015