
 1

Worst Case ExecutionWorst Case Execution
Time ComputationTime Computation
by Static Analysisby Static Analysis

Hugues Cassé <casse@irit.fr>
TRACES team

IRIT – University of Toulouse

ETR 2017

mailto:casse@irit.fr

 2

MyselfMyself

● Assistant Professor
 IRIT – University of Toulouse
 team TRACES is Research on Architecture, Compilation

and Embedded System

● My work
 WCET computation by static analysis
 static analysis of memory hierarchy
 data flow analysis of machine instructions
 designer and chief developer of OTAWA – open source tool

to compute WCET

 3

Using the Worst Case Execution TimeUsing the Worst Case Execution Time

● context – systems where time matters
● problem 1

I start my program at time t, will it return its result at
time t + Δt?

● problem 2

 my system is made of tasks τ1, τ2, ...
 each task τi has a dead-line Di (and a period Ti)
 we need to know if it is always schedulable

⇒ we need the cost Ci of each task, how?

 4

Execution of a Program (and time)Execution of a Program (and time)

Memory

Code

Data

Processor

1. get instruction
form memory
2. get the operand
3. perform the
computation
4. store the result

bus

wire traversal time
transistor set-up time

capacitor (dis)charging time
machine clock
unit = cycle

 5

Yet… not so simpleYet… not so simple

int last = 0;
void process(int input) {

for(int i = 0; i < input; i++)
if(last < 0)

last = -last;
else

last -= i;
if(last > 0)

do_something();
}
void main(void) {

while(1)
process(get_input());

}

● Time comes from
 system input
 loops / repetitions
 alternatives in the

execution flow

● Does the program halt?
 easier question in real-

time systems

● Effects of time constraint
miss?

 6

Different timesDifferent times

0 time

number of
execution paths

BCET actual
WCET

measured WCET estimated WCETBCET = Best Case
Execution Time

 7

OTAWAOTAWA
Open Tool for Adaptive WCET AnalysisOpen Tool for Adaptive WCET Analysis

● developed in University of Toulouse
 mostly vertical solution
 based mainly on abstract interpretation
 freely available
 several instruction sets and micro-architectures

● alternative project
 Heptane (Rennes)
 SWEET (Mälardalen)
 aiT from AbsInt (industrial)

 8

OutlineOutline

● What's the problem with WCET?

● IPET Approach

● Control Flow Problems

● Hardware Support

● Time Production

● Conclusion

 9

Counting instructionsCounting instructions

Program in C

Program in
machine language

s = 0;
for(int i = 0; i < 100; i++)

s += i;

00008b98 <main>:
 8b98: ldr r2, [pc, #40]
 8b9c: movr3, #0
 8ba0: str r3, [r2]
 8ba4: ldr r1, [r2]
 8ba8: ldr r0, [pc, #24]
 8bac: add r1, r1, r3
 8bb0: add r3, r3, #1
 8bb4: cmpr3, #10
 8bb8: str r1, [r2]
 8bbc: bne 8ba4 <main+0xc>
 8bc0: ldr r0, [r0]
 8bc4: bx lr
 8bc8: .word 0x00089efc

● method
 C = nbinst × latencyinst

 condition:
C = Ccond + max(Cthen, Celse)

 repetition:
C = Ccond +

(Ccond + Cbody) × N

● latency of instruction
 variable / instruction
 variable / hardware state
 pipeline

● idea: work at machine code level

 10

Measuring the time (a)Measuring the time (a)

● not easy
 what's about sensors /

actuators?
 external measurement

hardware (oscilloscope)
 internal microprocessor

counters

● when are the measurements
done?

 which input tests?
 which coverage? (blocks,

edges, paths)
 how to activate some parts of

code?

real
hardware software

test
sets

N. Williams, B. Marre, P. Mouy, M. Roger
Automatic Generation of Path Tests by
Combining Static and Dynamic Analysis,
2005

RapiTime, G. Bernat

 11

Measuring the time (b)Measuring the time (b)

...

Memory

instruction
cache

data
cache

FE

DE

EX

ME

EX

WB

● hardware behaviour depends on
internal state

● depends on the previously
executed code

● is the empty state the worst case?
– Not ever!

● example: data cache with write-
back

 empty: 1 miss → 1 memory access
 not empty: 1 miss → 2 memory

accesses (write-back + access
itself)

● measurement: how to test all
hardware states?

fetch

read

write-back

pipeline

 12

Alternative: Probabilistic WCETAlternative: Probabilistic WCET

● based on
 Extreme Value Theory
 significant set of

measurements

● upside – no need of
knowledge of

 hardware
 software

● downside
 when do we have enough

measures?
time (cycle)

probability to get this time

0

0

1

10-8

WCET
is

here

 13

Main issues to compute WCETMain issues to compute WCET

● execution paths → execution paths blow-up
 loops bounds
 infeasible paths
 other flow facts

● hardware behaviour→ hardware state blow-up
 deterministic
 predictable
 timing anomaly – local worst case does not always lead to global

worst-case.

● WCET = execution path (WCEP) with the worst execution
time

 overestimation is enough to achieve safety
 too much overestimation → waste of hardware resources

 14

OutlineOutline

● What's the problem with WCET?

● IPET Approach

● Control Flow Problems

● Hardware Support

● Time Production

● Conclusion

 15

OverviewOverview

program

path
analysis

hardware
analysis

time
computation

WCET

CFG, loop bounds, infeasible
paths, etc

qualification and quantification
of hardware behaviour

block time computation
global time computation

 16

CFGCFG
(Control Flow Graph)(Control Flow Graph)

● G = (V, E, ν, ω)
 V = { basic blocks} – sequence

of instruction only accepting
branches at end

 E V × V – flow of code ⊂
(sequence, branches)

 ν V – entry of CFG∈
 ω V – unique exit of CFG∈

● construction
 analysis of binary code
 extraction of target of branches

● paths from ν to ω = superset of
execution paths of the program

 17

IPET (Implicit PathIPET (Implicit Path
Enumeration Technique)Enumeration Technique)

● WCET =
 maximization of an ILP system

(Integer Linear Programming)
 flow problem

● C = max ∑v V∈ tv × xv

 tv – execution time of BB v

 xv – frequency of execution of v on
the WCEP

● under constraints
 path constraints
 hardware constraints

● smart solution to manage execution
path blow-up

Y.-T. S. Li, S. Malik, S.; A. Wolfe.
Efficient microarchitecture modelling
and path analysis for real-time software.
RTSS 1995

C = max 4 x1 + 15 x2 + 7 x3

 18

Path ConstraintsPath Constraints

● 1 execution of the task

xν = xω = 1

● flow enters a node as many
times it leaves it

∀v V, ∈ v ≠ ν ⋀ v ≠ ω

xv = ∑(w,v) PRED(∈ v) xw,v

= ∑(v,w) SUCC(∈ v) xw,v

 xv,w – traversal frequency of
edge (v, w) E on WCEP∈

 model the paths of CFG

xentry = xexit = 1
xentry = xentry,1

x1 = xentry,1 = x1,2

x2 = x1,2 + x2,2 = x2,2 + x2,3

x3 = x2,3 = x3,exit

xexit = x3,exit

 19

Loop ConstraintsLoop Constraints

● problem
 there is a loop
 as is, C tends toward ∞
 bound for x2,2 required!

● loop constraint for loop h

∑(v,h) BACK(h)∈ xv,h ≤ N

 BACK(h) – back edges of the loop headed by h
 N – loop bound

● bound relative to loop head h

∑(v,h) BACK(h)∈ xv,h ≤ N × ∑(v,h) ENTRY(h)∈ xv,h

 ENTRY(h) – edges entering the loop headed by
h

 nesting loop support

loop

x2,2 ≤ 10
or

x2,2 ≤ 10 x1,2

 20

Solving the ILP SystemSolving the ILP System

● assign constants to tv

● use an ILP solver
 lp_solve – open source
 CPlex, … – industrial

● result
 C – WCET
 xv – frequency of execution of block v

on WCEP
 xv,w – frequency of traversal of edge (v,

w) on WCEP

NOTE 1: xv and xv,w may represent
several WCEP implicitly

NOTE 2: xv are not mandatory as they
are represented as a sum of xv,w.

t
ENTRY

 = 0

x
ENTRY

 = 1

t
1
 = 3

x
1
 = 1

t
2
 = 7

x
2
 = 11

t
3
 = 2

x
3
 = 1

t
EXIT

 = 0

x
EXIT

 = 1

x
ENTRY,1

 = 1

x
1,2

 = 1

x
2,3

 = 1

x
3,EXIT

 = 1

x
2,2

 = 10

C = 82

 21

OutlineOutline

● What's the problem with WCET?

● IPET Approach

● Control Flow Problems

● Hardware Support

● Time Production

● Conclusion

 22

Scanning the execution pathsScanning the execution paths

● program
 binary format – ELF (Unix), ECOFF (Windows)
 big blocks of bytes – possibly qualified executable
 entry point address → first executed instruction
 possibly function addresses

● instructions
 computation, memory access instructions

next instruction: address + size
 branch instructions

 target address encoded in the instruction
 conditional → branch on target or on next instruction
 subprogram call → return address stored in the state (register, stack)
 subprogram return → use of the stored return address

 23

Ambiguity and complexitiesAmbiguity and complexities
in the machine instructions (ARM)in the machine instructions (ARM)

● implicit control flow
 usual subprogram call – bl label

(set PC + 4 in LR used to return)
 alternative form

mov LR, PC – set PC + 4 in LR
b label

● obfuscated indirect branch
 subprogram return – bx LR (or mov PC, LR)
 usual indirect branch (from a branch table)

ldr R0, [address]
bx R0

 maybe optimized form
ldr LR, [address]
bx LR

 24

IdentificationIdentification
of loopsof loops

● use of dominance
 ∀v, w V, v∈ dom w ⇔ ∀p

path from ν to w, v ∈ p
 h ∈ V is header of a loop if

 (∃ v, h) ∈ E ⋀ h dom v

● irreducible loop (“irregular”)
 with several headers
 infrequent
 causes issues with analysis

on loops
 solution:

 chooses an header
 duplicate paths from other

headers

ν

A

B

C

D

E

ω

A

B

C

D

A

B

C

D

C'

C dom D

 25

Execution paths issuesExecution paths issues

● indirect branches
 optimized switches → address table
 function pointer (in C)
 virtual functions (in C++)

● bounding the iteration number of
loops

 required for WCET

● infeasible paths
 CFG = superset of executions paths
 remove semantically infeasible

paths

void t1(int (*f)(void)) {
int i, j, s, k;
f = 1;
for(i = 0; i < 100; i++) {

if(i % 2 == 0)
s += f(i);

for(j = 0; j < i; j++) {
if(k == 1) {

g();
k = 0;

}
h(s);
s <<= 1;

}
}

}

 26

A few words aboutA few words about
Abstract Interpretation [Cousot, 1977]Abstract Interpretation [Cousot, 1977]

● concrete domain
 state S: Var →Int
 initial state: s0

 execution : Inst × S → S �
● question Q

 let i Inst, ∈ i is infeasible if, for all execution paths of the program, no state
exists before i.

 issue: too many executions paths!

● abstract domain
 state: S#, sometimes S#: Var → Int#

 and execution �#: Inst × S# → S# s.t.
 Q can be answered (yes or no) most of the time
 no answer for Q conservative assumption that ⇒ i is feasible
 possibly, |S#| << |S|

 27

Example of AI: interval analysisExample of AI: interval analysis

● concrete domain
 variable values
 S: ID → ℤ

● abstract domain
 Int = ({-∞}) × ({+∞})ℤ ⋃ ℤ ⋃
 S#: ID → Int
 �#: Inst × S# → S#

● example
 �#[x = y + z;] s =

let [ly, uy] = s[ry] in
let [lz, uz] = s[rz] in
s[x →[ly + ly, uz + uz]]

● joining execution paths
 JS: S# × S# → S#

 JS(s, s') = { i → Jint(s[i], s'[i]) }

 JS([l, u], [l', u']) = [min(l, l'), max(u, u')]

f = 1;
i = 1;

while(f <= n)

f = f * i;
i = i + 1;

 return f;
}

int fact(int n)
{

n → [0, 100]
f → [-∞, +∞]
i → [-∞, +∞]

n → [0, 100]

n → [0, 100]
f → [1, 1]
i → [1, 1]

n → [0, 100]
f → [1, +∞]
i → [101, 101]

n → [0, 100]
f → [1, +∞]
i → [1, 100]

n → [0, 100]
f → [1, +∞]
i → [2, 101]

 28

Source ApproachSource Approach

● data flow analysis on the C
 interval, congruence,

polyhedra, etc

● pros
 source language is richer
 typing is explicit
 memory model is explicit
 programs are smaller

● cons
 analysis depends on the

source language
 linkage between source

information and binary code
 or specialized compiler

source

binary

code
generator

optimizer

WCET
analysis

loop
bound

analysis

loop
bounds

 29

Binary ApproachBinary Approach

● several instruction sets in embedded systems
(ARM, PowerPC, Sparc, TriCore, etc)

 ⇒ translation to independent language (Alf, OTAWA's
semantic instructions)

● loosely typing of machine instructions
 rebuild types of values
 adapted Int# abstraction (CLP analysis)

● calculation of addresses (array, linked structures)
 S#: (Reg Addr) → Int∪ #

 imprecise address → loss of memory content⊤
 separation of memory areas (stack, heap, global, etc)⇒

 30

OutlineOutline

● What's the problem with WCET?

● IPET Approach

● Control Flow Problems

● Hardware Support

● Time Production

● Conclusion

 31

Typical hardwareTypical hardware

FE DE EX ME CM

instruction
cache L1

data
cache L1

unified
cache L2

pipeline

cache L1

cache L2

bus

SPM /
SRAM

flash /
ROM

DRAM I/O memory

 32

Supporting variabilitySupporting variability

● basically, 1 cycle / pipeline stage
● variability corresponding stage time increase⇒
● questions?

 how much time (in cycles) increase?
 how many times it happens?

● two main solutions
 static analysis category (mainly used)⇒
 transition graph

 vertices = basic block × hardware state
 edge = edge × hardware transitions
 modelled in ILP as CFG + constraints linking vertices with basic blocks

 33

Example: instruction cacheExample: instruction cache

● variability in FE
 hit (in the cache) → 1 cycle
 miss (out of the cache) → memory access time
 xv

miss – number of misses for instruction in block v
0 ≤ xv

miss ≤ xv

● categories to qualify behaviour
 Always Hit (AH) – instruction always in the cache

xv
miss = 0

 Always Miss (AM) – instruction never in the cache
xv

miss = xv

 Persistent relative to loop h (PE(h)) – instruction in the cache after first access
xv

miss ≤ xh

 Not Classified (NC) – behaviour too complex to be modelled
no constraint on xv

miss

 34

Cache ModelCache Model

● memory split in block of size B
● cache split in S sets containing

A blocks each (associativity)
● unique mapping between

memory blocks and cache sets
 sets are independent
 1 analysis for each set (reduce

the complexity of the analysis)

● replacement policy
 set full → which block to

remove?
 LRU – Least Recently Used
 other policies: round-robin,

MRU, PLRU, Random

...
memory

cache

B = 16b

set 0
set 1
set 2
set 3

S = 4,
A = 2

A B C A

access C → miss

B wiped out

A B B A

access B → hit

A B A B

access A → hit

 35

Abstract Cache StateAbstract Cache State

● ACS – Abstract Cache State
 Block – set of memory blocks
 Age – [0, A] (A = out of cache)
 ACS = Block → Age

● ULRU: Block × ACS → ACS – update
function

 U(b, a) = a' s.t. a'[b] = 0 and
 if not b in cache then increase other block

ages
 if b in cache then increase younger block

ages

● JLRU: ACS × ACS → ACS

 JLRU+ MUST → max of ages (worse age)
→ a[b] < A → AH

 JLRU+MAY → min of ages (best age)
→ a[b] = A → AM

 NC else

[Ferdinand, Applying compiler techniques
to cache behaviour prediction, 1997]

α

α

β

γ

δ

AMUST: *→A
AMAY: *→0

AMUST: α→0, *→A
AMAY: α→0, *→1

AMUST: α→0, *→A
AMAY: α→0, *→1

AMUST: α→ 1, β→0, *→A
AMAY: α→1, β→0, *→A

AMUST: β→1, γ→0, *→A
AMAY: β→1, γ→0, *→A

AMUST: α→1, β→0, *→A
AMAY: α→1, β→0, *→A

AMUST: α→1, β→1, *→A
AMAY: α→1, β→0, γ→0, *→A

AMUST: δ→0, *→A
AMAY: β→1, γ→1, δ→0, *→A

 36

Abstract Cache State (continued)Abstract Cache State (continued)

α

α

β

γ

δ

AMUST: *→A
AMAY: *→0

AMUST: α→0, *→A
AMAY: α→0, *→1

AMUST: α→0, *→A
AMAY: α→0, *→1

AMUST: *→A
AMAY: α→1, β→0, δ→0, *→A

AMUST: γ→0, *→A
AMAY: β→1, γ→0, δ→1, *→A

AMUST: *→A
AMAY: α→1, β→0, δ→1, *→A

AMUST: *→A
AMAY: α→1, β→0, γ→0, δ→1, *→A

AMUST: δ→0, *→A
AMAY: β→1, γ→1, δ→0, *→A

AMUST: *→A
AMAY: α→0, β→1, γ→1, δ→0, *→A

Fix point reached!

AMUST(α) = A, AMAY(α) <A → NC

AMUST(α) = 0 → AH

AMAY(γ) = A → AM

 37

PersistencePersistence

α

AMUST: *→A
AMAY: *→0

AMUST: *→A
AMAY: *→0

AMUST: α→0, *→A
AMAY: α→0, *→1

AMUST: *→A
AMAY: *→0

AMUST(α) = A
AMAY(α) = 0 → NC
but only 1 at first iteration!

Solution: extend ACS*
Age* = { } ∪ [0, A]⟂

 – ⟂ not already loaded
JPERS = JMUST extended to ACS*

α

v

h

AMUST: *→A
AMAY: *→0

APERS: *→⟂

AMUST: *→A
AMAY: *→0

APERS: *→⟂ AMUST: α→0, *→A
AMAY: α→0, *→1

APERS: α→0, *→⟂

AMUST: *→A
AMAY: *→0

APERS: α→0, *→⟂

AMUST(α) = A, APERS(α)<A
→ PE(h)

In the ILP
xα

miss ≤ xv,h

[Ferdinand, A fast and efficient cache persistence analysis, 2005]

Multi-level
ACS+ = ACS*[0..n]

n loop levels
[Ballabriga, Improving the First-Miss Computation in Set-Associative Instruction Caches, 2008]

 38

Cache support in static WCETCache support in static WCET

● Instruction cache
 with LRU 10-15% NC
 round-robin
 PLRU
 Random – hum!

● Data cache: address analysis
 scalar access → 1 address
 array access → n addresses

 several possible states
 categories are not enough ~50% NC
 alternative → upper bound of miss count

● Multi-level cache
 CAC (Cache Access Classification) from Li to Li+1

 Never (N), Always (A), Uncertain (U) → join states accessed / not accessed

[Hardy, WCET analysis of multi-level non-inclusive set-associative instruction caches, 2008]

● Unified cache
 mix instruction and data in the same (L1, but more often L2 or L3)
 imprecision of data addresses impact the instructions

 39

Other effectsOther effects

● branch prediction
 category approach – Always D-predicted, First D-predicted, First Unknown,

Always Unknown [Colin, 2000]
 graph approach [Burguière, 2006]

● Category only
 DRAM buffer re-use [Ballabriga, 2008]
 MAM flash prefetch [TRACES, WCET Tool Challenge, 2011]

● about DRAM – refresh cycle
 internal state and work of DRAM is more and more hidden

● bus / interconnection network usage
 DMA or multicore
 current trend of research – predicting the access time, sharing the bus

 40

OutlineOutline

● What's the problem with WCET?

● IPET Approach

● Control Flow Problems

● Hardware Support

● Time Production

● Conclusion

 41

How to compute the block time?How to compute the block time?

● work of pipeline
 instructions enter according to the program order
 instructions go forward as soon as required resources are

available (buffer slot, operand value, stage, functional unit,
memory unit, etc.)

● lots of ISA → even much more micro-architecture models
 generic system to represent instruction execution
 split in step

 stage
 resource requirements (register, memory)
 time passed in the stage [Herbegue, 2014]

FE DE EX ME CM pipeline

 42

Execution graph approachExecution graph approach

I1: ldrhu R1, [R11, #-2]

I2: mov R1, R1, LSL #16

I3: mov R1, R1, ASR #16

I4: cmp R1, #0

I5: bge 0x40001214

FE

FE

FE

FE

FE

DE

DE

DE

DE

DE

INT

INT

INT

INT

INT

EX

EX

EX

EX

EX

INT

INT

INT

INT

INT

ME

ME

ME

ME

ME

INT

INT

INT

INT

INT

WB

WB

WB

WB

WB

R1

R1

R1

SR

missmissmiss

hit

miss

13

0

3

3 5

4

8

9

10

11 12

[Rochange, A Context-Parameterized Model for Static Analysis of Execution Times, 2009]

 43

Block execution overlappingBlock execution overlapping

● block overlapping
 tw = DWB/I3 – DFE/I1

 tv,w = DWB/I'4 – DWB/I3

 tw > tv,w

● cost for block → cost for
edge

 C = max Σv,w E∈ tv,w xv,w

 reduce overestimation
 support for branch

prediction on edge
 for v, consider worst case →

longer sequences of blocks
depending on the size

tv,w = WB/I'4 - WB/I3

I'1 I'2 I'3 I'4 I1 I2 I3

BB1 BB2

BB3

t1-3
t2-3

block v block w

 44

Taking into account eventsTaking into account events

● current WCET formula
 C = max Σ(v,w) E∈ tv,w xv,w

● for an edge (v, w)
 several time variations → time variation on execution graph node or edge

(event)
 Ev,w = { ei } – set of events with variation (+ ni cycles → xi over-estimation)

 Cv,w = { cj } – set of configurations s.t. ei enabled, disabled → cj[ei] = { true,
false } → 2|Ev,w| configurations

 cj applied to exegraph → new execution time tv,w
j

● new WCET formula

 C = max Σv,w E∈ Σcj Cv,w∈ tv,w
j xv,w

j

 with constraints

∀(v,w) E, e∈ ∀ i E∈ v,w, Σcj Cv,w cj[ei] = true∈ ⋀ xv,w
j ≤ xi

 too many variables, constraints!

 45

Events for instruction cacheEvents for instruction cache

● category of instruction I for sequence (v, w)
 AH → no time variation → no event
 AM → FE + memory access time → no event
 NC → FE incremented or not → event

bounded by xv,w

 PE(h) → FE increment or not → event
bounded by Σ(u,h) E∈ xu,h

● several events in 1 sequence
 B = 16
 v from 0x1014 to 0x1028 → 2 cache accesses

(0x1010 – AH, 0x1020 – NC)
 w from 0x1028 to 0x1044 → 3 cache accesses

(0x1020 – AH, 0x1030 – PE(h), 0x1040 – PE(h))
 Ev,w = { 0x1020 – NC, 0x1030 – PE(h), 0x1040 – PE(h) }

 number of times – 8

● …, data cache access, branch prediction, flash prefetching, ...

 46

Reducing the complexityReducing the complexity

● Naive solution – taking the max
 C = max Σ(v,w) E∈ Tv,w xv,w

 ∀(v, w) E, T∈ v,w = maxcj Cv,w∈ tv,w
j

● Binary approach
 lots of tv,w

j have the same value ← pipeline latency smoothing mechanism (buffers),
overlap of effects

 low time (performant hardware work) → frequent
 high time (cache miss, misprediction, etc) → less frequent → overestimation has little

effect

● New ILP formulat
 Cv,w = LTS HTS (Low Time Set – High Time Set)∪

 C = max Σ(v,w) E∈ tv,w
LTS xv,w

LTS + tv,w
HTS xv,w

HTS

 tv,w
LTS = maxcj LTS∈ tv,w

j, tv,w
HTS = maxcj HTS∈ tv,w

j

 tv,w
LTS << tv,w

HTS

 … xi changed according to xv,w
LTS and xv,w

HTS

● current research → testing other solutions

 47

OutlineOutline

● What's the problem with WCET?

● IPET Approach

● Control Flow Problems

● Hardware Support

● Time Production

● Conclusion

 48

ConclusionConclusion

● IPET approach for WCET computation by static analysis
 flexible framework based on ILP
 path analysis
 acceleration mechanisms analysis
 block time analysis

● Limitations
 indirect control flow (branch tables, pointers)
 analysis of infeasible paths
 acceleration mechanism analysis → cache: best precision with LRU, may

require ad-hoc analysis
 block time analysis → ILP resolution complexity problem
 size of the program → size of ILP → resolution time

 49

Opened domainsOpened domains

● support of complex applications
 parametric WCET
 adaptive WCET analysis driven by precision
 closer integration of events in the block time

● support of complex hardware
 DRAM
 pseudo-round robin caches
 improved support for PLRU, Round-Robin, MRU
 automatic integration of new hardware

● support of multi-execution
 multi/many-core sharing of bus/interconnection
 more precise pre-emptive multi-thread/interrupt analysis

● extension
 architecture – predictable and efficient design
 compiler – WCET-aware optimizations
 generator – WCET oriented task generation and mapping

 50

Any question?Any question?

http://www.otawa.fr

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50

