Worst Case Execution
Time Computation
by Static Analysis

Hugues Cassé <casse @irit.fr>
TRACES team
IRIT — University of Toulouse

UNIVERSITE
TOULOUSEII
PAuL SABATIER e

mailto:casse@irit.fr

Myself

Assistant Professor

IRIT — University of Toulouse

team TRACES is Research on Architecture, Compilation
and Embedded System

My work

WCET computation by static analysis
static analysis of memory hierarchy
data flow analysis of machine instructions

designer and chief developer of OTAWA — open source tool
to compute WCET

Using the Worst Case Execution Time

context — systems where time matters
problem 1

| start my program at time t, will it return its result at
time t + At?

problem 2
my system is made of tasks t,, T,, ...
each task t,has a dead-line D, (and a period T))
we need to know if it is always schedulable

= we need the cost C; of each task, how?

Execution of a Program (and time)

Memory Processor
Code 1. get instruction
form memory
2. get the operand
bUS 3. perform the
Data computation

4. store the result

wﬁﬁ/

wire traversal time
transistor set-up time
capacitor (dis)charging time

“/" machine clock
unit = cycle

Yet... not so simple

int last = 0;
void process(int input) { Time comes from
for(inti = 0; i < input; i++) _
if(last < 0) system input
last = -last; N
olse loops / repetitions
last -= i; alternatives in the
if(last > 0) execution flow
do something();
) - ° Does the program halt?
void lr??i%\)/oid) { easier question in real-
while .
process(get_input()); time systems
} Effects of time constraint

miss?

Different times

number of
execution paths

AT

‘ -
BCET actual time
WCET
measured WCET estimated WCET

BCET = Best Case
Execution Time

OTAWA
Open Tool for Adaptive WCET Analysis

developed in University of Toulouse

mostly vertical solution

based mainly on abstract interpretation

freely available

several instruction sets and micro-architectures
alternative project

Heptane (Rennes)
SWEET (Malardalen)
alT from Absint (industrial)

Outline

What's the problem with WCET?
IPET Approach

Control Flow Problems

Hardware Support

Time Production

Conclusion

Counting instructions

Program in C

s=0;

for(inti=0;i<100; i++)
S +=1i;

Program in
machine language

00008b98 <main>:

8b98:
8b9c:
8ba0:
8ba4:
8ba8:
8bac:
8bb0:
8bb4:
8bb8:
8bbc:
8bc0:
8bc4:

8bc8

bx Ir

ldr r2,
movr3,
str r3,
ldr r1,
ldr rO,
add r1,
add r3,
cmpr3,
str rl,
bne 8ba4d <main+0xc>
[dr rO,

[pc, #40]
#0

[r2]

[r2]

[pc, #24]
rl, r3

r3, #1
#10

[r2]

[rO]

: .word 0x00089efc

method
C= nbinst X Iatencyinst

condition:
C = Ceong + MaX(Cyens Ceise)

repetition:
C - Ccond +
(Ccond + C:body) X N

latency of instruction

variable / instruction
variable / hardware state
pipeline

iIdea: work at machine code level

test
sets
o
P
e
o
=
© =
~ O
S

real
hardware software

(o)

s

74

RapiTime, G. Bernat

N. Williams, B. Marre, P. Mouy, M. Roger
Automatic Generation of Path Tests by

Combining Static and Dynamic Analysis,

2005

Measuring the time (a)

not easy

what's about sensors /
actuators?

external measurement
hardware (oscilloscope)

internal microprocessor
counters

when are the measurements
done?

which input tests?

which coverage? (blocks,
edges, paths)

how to activate some parts of
code? 10

Measuring the time (b)

Memory

instruction

% cache
fetch

data

- read cache

write-back

FE

DE
EX

ME
WB

pipeline

hardware behaviour depends on
internal state

depends on the previously
executed code

IS the empty state the worst case?
— Not ever!

example: data cache with write-
back

empty: 1 miss - 1 memory access

not empty: 1 miss — 2 memory
accesses (write-back + access
itself)

measurement: how to test all
hardware states?

11

Alternative: Probabilistic WCET

* based on
probability to get this time . Extreme Value Theory
A 5 +significant set of
j| measurements

* upside — no need of
knowledge of

+ hardware
+ software

« downside

+ when do we have enough

3 —»>
WCET
' measures?

0 s time (cycle)

here

12

Main issues to compute WCET

execution paths — execution paths blow-up

loops bounds
iInfeasible paths
other flow facts

hardware behaviour — hardware state blow-up

deterministic
predictable

timing anomaly — local worst case does not always lead to global
worst-case.

WCET = execution path (WCEP) with the worst execution
time

overestimation is enough to achieve safety

too much overestimation — waste of hardware resources

13

Outline

What's the problem with WCET?
IPET Approach

Control Flow Problems
Hardware Support

Time Production

Conclusion

14

Overview

program

path
analysis

hardware
analysis

time
computation

.

WCET

CFG, loop bounds, infeasible
paths, etc

qualification and quantification
of hardware behaviour

block time computation
global time computation

15

CFG

(Control Flow Graph)

ENTRY

L
(BB | (00008b98) \

main:

00008bY S 1dr 2, [pe, #40]
00008bYc mov r3, #0
0000 8bal strr3, [r2, #0]

'

BB 2 (00008bad) \

00008khad Idrrl, [r2, #0]

00008bal 1dr v, [pe, #24]

00008bac add rl,rl, r3 aken
00008bb0 add r3,r3, #1

00008bb4 cmp 3, #10

00008bDbE strrl, [r2, #0]

00008bbe bne 00008bad # 00008bad

'

BE 3 (00008bcO)

t:rmr:shcr: 1dr 10, [10, #ﬂj

—~

00008bed bx Ir

- G=(V,E, v, w)

V = { basic blocks} — sequence
of instruction only accepting
branches at end

E cV xV —flow of code
(sequence, branches)

v €V —entry of CFG
w € V — unique exit of CFG

» construction

*

*

*

*

+ analysis of binary code
+ extraction of target of branches

» paths from v to w = superset of
execution paths of the program

16

IPET (Implicit Path

L J

{ } Enumeration Technique)

main:

00008h98 1dr 12, [pc, #40]
00008b%¢ mov r3, #0
00008bal strr3, [r2,#0]

! - WCET =

(BE 2 (00008bad) ‘\ .. .
00008bad 1dre1, [<2, #0] + maximization of an ILP SyStem

00008ba8 1dr 0, [pe, #24]
00008bac add rl.rl, 13 aken

‘ (Integer Linear Programming)

00008bb4 cmp r3, #10
O0008bbE strrl, [r2, #0]

00008bbe bne 0000 8had # 00008bad . ﬂ ow p ro b I em

r BB 3 (00008bec() ‘I e C - maX ZVE V tV X XV

00008be0 1dr 0, [10, #0]
00008bed bx Ir

- t,— execution time of BB v

- X, — frequency of execution of v on
the WCEP

» under constraints

C=max4x +15x,+7x, + path constraints
+ hardware constraints

Y-T. S. Li, S. Malik, S.; A. Wolfe. » smart solution to manage execution
Efficient microarchitecture modelling path blow-up

and path analysis for real-time software.

RTSS 1995 ’

ENTRY

 J

(BE | (00008b9S)
main:
OO008RIE 1dr 12, [pe. #40]
00008b%e mov 13, #0
Q0008bal stre3, [r2, #0]

l

(BE 2 (00008bad) \

Q0008bad 1drrl, [r2, #0]
00008ba8 1dr), [pe, #24]
00008bac add rl,rl, 13 aken

Q0008bbO add 13, r3, #1

00008bb4 cmp 3, #10

00008bbE strrl, [r2,#0]

00008bbe bne 00008had # 0000 8had

l

BE 3 (00008bc0) \

00008bc0 1dr 0, [10, #0]
00008bcd bx 1r

entry,1 X1,2
12 T X5,
3 = X3 = Xy it

exit X3,exit

Path Constraints

1 execution of the task

X, =X, =1
flow enters a node as many
times It leaves it

VWweV,VEVAVZW®

Xv = Z(W,V) € PRED(v) XW,V

= Z(V,W) € SUCC(v) XW,V
X, — traversal frequency of
edge (v, w) € E on WCEP

=X,, + X, model the paths of CFG

18

ENTRY

 J

(BE | (D0008H98)

main:
OO008RIE 1dr 12, [pe. #40]
00008b%c mov 13, #0

Q0008bal stre3, [r2, #0]

v _loop

BE 2 (00008khad) \\

00008bad 1drrl, [r2, #0]
00008ba8 1dr), [pe, #24]

00008bac add rl,rl, 13 taken
00008Hh0 add 13,13, #1

00008bb4 cmp r3,#10

O0008bbE strrl, [r2, #0]

O0008kbe bne 00008had # 0000 8bad

l

(BE 3 (00008bc0)

00008bc0 1dr 0, [10), #0]
00008bcd bx 1r

EXIT
X,,=10
or
X..<10x

2,2 — 1,2

Loop Constraints

* problem

+ thereis aloop
- asis, C tends toward co
+ bound for x, , required!

* loop constraint for loop h
> wh € Backh) Xvn < N
+ BACK(h) — back edges of the loop headed by h
+ N —loop bound

* bound relative to loop head h

> wh € Backh) Xvh S N X 3 1y e entry(r) Xun

+ ENTRY(h) — edges entering the loop headed by
h

+ nesting loop support

19

Solving the ILP System

tENTRY - .
_ 1 ENTRY
XENTRY —
I X = 1

ENTRY1

(EE | (00008b98) \

tl IR 3 main:
O0008EYE 1dr 12, [pe. #40]
X = 1 00008b%e mov r3, #0
1

00008bal strr3, [r2, #0]

l X, = 1
(- BB 2 (0D0008bad) \

N 7 Q000 8bad 1drrl, [r2, #0]
t2 = 00008ba8 1dr 0, [pe, #24]

00008bac add rl,rl, 13 aken
. O0008BbO add 13, 13, #1
X, = 11 | Gooosses emp 13, #10 x. =10
0000&bLE strrl, [r2, #0] 2,2

00008bbe bne 00008bad # 00008bad

x .=1
l 2,3
t =2 (BB 3 (00008bc0) \
3 0000 8be0 1dr 10, [r0, #0]
N O00O08bed bx Ir
X =

XEXI T 1

assign constants to ¢,

use an ILP solver
l|p_solve — open source
CPlex, ... —industrial
result

C-WCET

X, — frequency of execution of block v
on WCEP

X,» — frequency of traversal of edge (v,
w) on WCEP

NOTE 1: x, and x,,, may represent
several WCEP implicitly

NOTE 2: x, are not mandatory as they
are represented as a sum of x,,.

20

Outline

What's the problem with WCET?
IPET Approach

Control Flow Problems
Hardware Support

Time Production

Conclusion

21

Scanning the execution paths

program
binary format — ELF (Unix), ECOFF (Windows)
big blocks of bytes — possibly qualified executable
entry point address — first executed instruction
possibly function addresses

instructions

computation, memory access instructions
next instruction: address + size
branch instructions
target address encoded in the instruction
conditional — branch on target or on next instruction
subprogram call — return address stored in the state (register, stack)
subprogram return — use of the stored return address
22

Ambiguity and complexities
In the machine instructions (ARM)

 Implicit control flow

usual subprogram call — bl label
(set PC + 4 in LR used to return)

- alternative form
mov LR, PC —-setPC+4inLR
b label

» obfuscated indirect branch

+ subprogram return — bx LR (or mov PC, LR)

+ usual indirect branch (from a branch table)
Idr RO, [address]
bx RO

+ maybe optimized form
Idr LR, [address]
bx LR

23

Identification
of loops

use of dominance

Vv, weEe V,vdomw e Vp
path fromvtow,ve&p

h € Vis header of a loop if
(v, h) € EAN\ hdomyv

irreducible loop (“irregular™)

with several headers
infrequent

causes issues with analysis
on loops
solution:

chooses an header

duplicate paths from other
headers

24

Execution paths issues

D direct branches void t1(int (*f)(void)) {

inti, |, s, k;
optimized switches — address table f= L , ,
_ _ _ for(i=0;i<100; i++) {
function pointer (in C) if(i % 2 == 0)
virtual functions (in C++) s +=f(i);
bounding the iteration number of for(j=0;j<i:j++) {
loops if(k ==1) {
. ();
required for WCET E =0
infeasible paths r}](s)
CFG = superset of executions paths s <<=1;
remove semantically infeasible) }

paths)

25

A few words about
Abstract Interpretation [Cousot, 1977]

* concrete domain
state S: Var - Int
- Initial state: s,
execution I: Instx S - S
* guestion Q

let i € Inst, i is infeasible if, for all execution paths of the program, no state
exists before I.

issue: too many executions paths!
+ abstract domain
state: S#, sometimes S# Var - Int#
+ and execution [# Inst x S# - S# s.t.
+ Q can be answered (yes or no) most of the time
+ no answer for Q = conservative assumption that / is feasible
+ possibly, [S#| << |S]

26

Example of Al: interval analysis

concrete domain
+ variable values
« S:ID - Z
abstract domain
© Int=(Z U {-00}) x (Z U {+})
+ S#*|ID - Int
« [# Inst x S# —» S#
example
« IMx=y+2z]s=
let [, u,] =s[r,] in
let [I,, u,] = s[r,] in
s[x = [l, + Iy, u, + u,]]
joining execution paths
- Jg: S# x S#t -~ S#
« Js(s, 8) ={i — Ji(sli], sTi]) }
< Js([I, ul, [I', u'D = [min(, I, max(u, u")]

n- [0, 100]
int fact(int n)
{ n- [0, 100]
+ fo[-0, +o]
f= 1. i—)[-oo,+oo]
=1 n - [0, 100]
¢ f-[1,1]
i-[1, 1]
while(f <= n)

i-»[1,100]

n- [0, 100]
f-[1, +]
f

f=f*i
. n- [0, 100]
=|+1, f-[1, +o]
n - [0, 100] I = [2, 101]
f-[1, +]
| - [101, 101]

}

return f;

27

Source Approach

data flow analysis on the C loop
. source
interval, congruence, ' bound
polyhedra, etc analysis
ros
P o code
source language is richer generator
typing is explicit ¢ \
memory model is explicit
4 g optimizer loop
programs are smaller bounds
cons ¢
analysis depends on the binary

source language

linkage between source
information and binary code WCET %

or specialized compiler analysis

Binary Approach

several instruction sets in embedded systems
(ARM, PowerPC, Sparc, TriCore, etc)

= translation to independent language (Alf, OTAWA's
semantic instructions)

loosely typing of machine instructions
rebuild types of values
adapted Int# abstraction (CLP analysis)

calculation of addresses (array, linked structures)
S# (Reg u Addr) - Int#

Imprecise address T — loss of memory content
= separation of memory areas (stack, heap, global, etc)

29

Outline

What's the problem with WCET?
IPET Approach

Control Flow Problems
Hardware Support

Time Production

Conclusion

30

FE DE EX
(= (=
~instruction & data
cache L1 cache L1
(=)
~unified
cache L2
=
(= (=
SPM / flash/ N
SRAM rom = DRAM o

Typical hardware

/0

CM

pipeline

cache L1

cache L2

bus

memory

31

Supporting variability

basically, 1 cycle / pipeline stage
variability = corresponding stage time increase

guestions?
how much time (in cycles) increase?
how many times it happens?

two main solutions

static analysis = category (mainly used)

transition graph
vertices = basic block x hardware state
edge = edge x hardware transitions
modelled in ILP as CFG + constraints linking vertices with basic blocks

32

Example: instruction cache

variability in FE
hit (in the cache) — 1 cycle
miss (out of the cache) -~ memory access time

x,miss — number of misses for instruction in block v
0 < xmiss < X,

categories to qualify behaviour

Always Hit (AH) — instruction always in the cache
X,miss = 0

Always Miss (AM) — instruction never in the cache
vaiss =Xy

Persistent relative to loop h (PE(h)) — instruction in the cache after first access
vaiss < X

Not Classified (NC) — behaviour too complex to be modelled
no constraint on X, miss

33

Cache Model

memory split in block of size B

cache split in S sets containing
A blocks each (associativity)

unique mapping between
memory blocks and cache sets

sets are independent

1 analysis for each set (reduce
the complexity of the analysis)

replacement policy

set full - which block to
remove”?

LRU — Least Recently Used

other policies: round-robin,
MRU, PLRU, Random

set0
set1l
set 2
set 3

cache

S
A

4,
2

access C » miss

A

B

access B - hit

A

B

access A - hit

A

B

C

A

memory

B =16b

B wiped out

34

Abstract Cache State

ACS — Abstract Cache State

Block — set of memory blocks

Age — [0, A] (A = out of cache)

ACS = Block — Age
U ru: Block x ACS - ACS — update
function

U(b, a) =a's.t. a'[b] =0 and

if not b in cache then increase other block
ages

if b in cache then increase younger block
ages

Jiru: ACS X ACS - ACS
Jirus must — Max of ages (worse age)
- alb] <A - AH

Jirusmay — Min of ages (best age)
- alb]= A - AM

NC else

[Ferdinand, Applying compiler techniques

to cache behaviour prediction, 1997]

A XA

MUST
A

- X
MAY* _)o

0
AMUST a_)o *_)A
A, 00, ¥-1 / \
0
AMUST a_)o *_)A \ /
A, @20, *-1
AMUST a- 1, -0, *>
A, a=1, B0, *—)A

: B-1, y=0, *—)A
: B-1, y=0, *-A

MUST A, .. a-1, -0, *-A

MUST*

A, @21, B0, *-A

MAY

A, .. a-1, B-l, *oA

MUST®

A, 0—~1, B0, y=0, *-A

AMUST 6_)0 *_)A
-1, y-1, 80, *>A
Bl y ot

MAY

Abstract Cache State (continued)

+ X
AMUST' —A

A, @20, B-1, y=1, 50, *>A

+ X
AMUST' —A

A, @=1, B0, 50, *>A

AMUST: y=0, *-A
A, :B~-1, y=0, 6-1, *>A

MAY*

« X
AMUST' —A

A, @=1, B0, 51, *-A

¢ X
AMUST' —A

At 01, B0, y=0, -1, *-A Fix point reached!

36

AMUST: *_)A
A,y *-0
A 0a-0, *->A

MUST*
. X
A, 00, *=>1

A

() = A
A, (@) =0 - NC
but only 1 at first iteration!

MUST

In the ILP

miss <«
X, = X,n

Persistence

Solution: extend ACS*
Age*={ 1L } u [0, A]

1 - not already loaded
extended to ACS*

Joers = Jwust

A XA
AMUS:I' *_)O V
MAY*
APERS: *_)J_ L
h AMUST: *_)A
A,y -0
APERS: o-0, *o |
a AMUST: o0, *-A
AMAY: -0, *->1
A a0, *> |

PERS®

[Ferdinand, A fast and efficient cache persistence analysis, 2005]

Multi-level
ACS* = ACS*0-n]
n loop levels

[Ballabriga, Improving the First-Miss Computation in Set-Associative Instruction Caches, 2008]

37

Cache support in static WCET

Instruction cache
+ with LRU 10-15% NC
+ round-robin
- PLRU
Random — hum!
Data cache: address analysis

+ scalar access — 1 address

< array access — n addresses

- several possible states
- categories are not enough ~50% NC
- alternative — upper bound of miss count

Multi-level cache
- CAC (Cache Access Classification) from L; to L;,,
+ Never (N), Always (A), Uncertain (U) — join states accessed / not accessed
[Hardy, WCET analysis of multi-level non-inclusive set-associative instruction caches, 2008]
Unified cache
< mix instruction and data in the same (L1, but more often L2 or L3)
+ imprecision of data addresses impact the instructions

38

Other effects

branch prediction

category approach — Always D-predicted, First D-predicted, First Unknown,
Always Unknown [Colin, 2000]

graph approach [Burguiére, 2006]
Category only

DRAM buffer re-use [Ballabriga, 2008]
MAM flash prefetch [TRACES, WCET Tool Challenge, 2011]

about DRAM - refresh cycle
internal state and work of DRAM is more and more hidden
bus / interconnection network usage

DMA or multicore
current trend of research — predicting the access time, sharing the bus

39

Outline

What's the problem with WCET?
IPET Approach

Control Flow Problems
Hardware Support

Time Production

Conclusion

40

How to compute the block time?

= S 2=
FE " DE EX I ME CM pipeline

2 2 =

work of pipeline

Instructions enter according to the program order

Instructions go forward as soon as required resources are
available (buffer slot, operand value, stage, functional unit,
memory unit, etc.)

lots of ISA — even much more micro-architecture models

generic system to represent instruction execution
split in step

stage

resource requirements (register, memory)

time passed in the stage [Herbegue, 2014]

Execution graph approach

) miss
miss

11: Idrhu R1, [R11, #-2] FEQ—> DE9—> EX — ME6> WB
v —r

12: mov R1, R1, LSL #16 FEe DE Exe ME WB

hitz¢ *Rl

13: mov R1, R1, ASR #16 FE DE Ex9 ME WB
/o =

14: cmp R1, #0 FE DE EX ME WB
¢ o

I5: bge 0x40001214 FE DE

EX@ ME® WI?® f

[Rochange, A Context-Parameterized Model for Static Analysis of Execution Times, 2009]

Block execution overlapping

* block overlapping

*

*

*

t, = Dweizs — Drens

t,w= Dwera — Dwens

tW > I:v,w

« cost for block — cost for
edge

2

*

L 2

C = max Zv,w € E 1:v,w XV,W
reduce overestimation

support for branch
prediction on edge

for v, consider worst case —
longer sequences of blocks
depending on the size

block v block w
'L 1'21'31'4 11 12 13

t

v,

43

Taking into account events

current WCET formula
C = max Z(v,w) €EE tv,w XV,W

for an edge (v, w)

several time variations — time variation on execution graph node or edge
(event)

E.. = { e }— set of events with variation (+ n, cycles - X; over-estimation)

C.w =1{ ¢ } — set of configurations s.t. e; enabled, disabled — c,[e] = { true,
false } — 2IEvwl configurations

c; applied to exegraph — new execution time t,,
new WCET formula

C=max2,,ce Zqecww tuw Xuw

with constraints

V(v,w) € E, Ve, € E,, Ze cvw citeil = true Xuw! < X

too many variables, constraints!
44

Events for instruction cache

category of instruction / for sequence (v, w)

AH - no time variation — no event
AM - FE + memory access time — no event

NC - FE incremented or not - event
bounded by x,,,

PE(h) — FE increment or not — event
bounded by 2,1y c e Xun

several events in 1 sequence
B=16

v from 0x1014 to 0x1028 — 2 cache accesses
(0x1010 — AH, 0x1020 — NC)

w from 0x1028 to 0x1044 — 3 cache accesses
(0x1020 — AH, 0x1030 — PE(h), 0x1040 — PE(h))

E,. = { 0x1020 — NC, 0x1030 — PE(h), 0x1040 — PE(h) }
number of times — 8
..., data cache access, branch prediction, flash prefetching, ...

Reducing the complexity

Naive solution — taking the max
C=max Zyuece Tuw Xuw
V(v, w) €EE, T,, = MaX; e cyw tuw
Binary approach

lots of t,,j have the same value < pipeline latency smoothing mechanism (buffers),
overlap of effects

low time (performant hardware work) — frequent

high time (cache miss, misprediction, etc) — less frequent — overestimation has little
effect

New ILP formulat
C,w = LTS U HTS (Low Time Set — High Time Set)
C = max Z(V’W) - ‘[V‘WLTS XywtTS + tv’WHTS XywH'TS
t, WS = MaXg e irs by LTS = MaXg e prs by
tV’WLTS << tV’WHTS
... X; changed according to x,,.™s and x,,HTS

current research — testing other solutions

46

Outline

What's the problem with WCET?
IPET Approach

Control Flow Problems
Hardware Support

Time Production

Conclusion

47

Conclusion

IPET approach for WCET computation by static analysis

flexible framework based on ILP
path analysis
acceleration mechanisms analysis
block time analysis
Limitations
indirect control flow (branch tables, pointers)

analysis of infeasible paths

acceleration mechanism analysis — cache: best precision with LRU, may
require ad-hoc analysis

block time analysis — ILP resolution complexity problem
size of the program — size of ILP — resolution time

48

Opened domains

support of complex applications
parametric WCET
adaptive WCET analysis driven by precision
closer integration of events in the block time
support of complex hardware
DRAM
pseudo-round robin caches
improved support for PLRU, Round-Robin, MRU
automatic integration of new hardware
support of multi-execution
multi/many-core sharing of bus/interconnection
more precise pre-emptive multi-thread/interrupt analysis
extension
architecture — predictable and efficient design
compiler — WCET-aware optimizations
generator — WCET oriented task generation and mapping

49

Any question?

QD)
http://www.otawa.fr @ :

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50

